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I. INTRODUCTION

This report is concerned with the analysis of unsteady two-

dimensional transonic flow in channels. Although the motivation

behind the work was the study of the effects of oscillating walls on

the flow, it was found that in the problems studied it was possible to

include the effects of oscillations in the back pressure, interpreted

as pressure variations impressed upon the flow at some point down-

stream of the shock wave. Hence either of, or any mixture of, the

two means of causing unsteadiness in the flow may be considered; of

particular importance is the ability to describe the kinds of wall motion

which correspond to a given oscillation in back pressure. Because both

modes of introducing unsteadiness are retained, the results have appli-

cations to the flow in inlets and to the flow between the compressor

blades in turbojet engines and to the diffusers of ramjet engines, as

long as the flow is in the transonic regime.

Physically, wall oscillations may be associated with either blade

flutter or the displacement of the flow due to a turbulent boundary layer

or a separation bubble; the oscillations in back pressure are associated

with pressure fluctuations caused by combustion instabilities or inter-

actions with the wakes of blades or flow asymmetries, etc., downstream

of the channel in question. When the relative velocity at the tip of a

rotor blade exceeds the sonic value, the possibility of supersonic un-

stalled flutter has been demonstrated [1, Z. In addition, interaction
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between the core flow and the boundary layer has been observed in

experiments involving transonic flows through channels with separation

[3,41 ; apparently, self-induced oscillations occurred with variations in

the position of the shock wave and the location and size of the separation

bubble. Although these two phenomena are examples of cases where

the effective boundary of the inviscid flow field moves with time, it is

clear that changes in back pressure could certainly affect the inter-

actions. Finally, in a ramjet engine (and conceivably in a turbojet

engine) combustion instabilities could propagate upstream and thus be

the source of the oscillations in pressure [5]. Indeed, in a ramjet

engine, it appears possible that self-sustained oscillations could be

generated as a result of the interaction between the diffuser and the

combustion chamber; when an internal shock wave occurs in the diffu-

ser, such oscillations could lead to this shock being disgorged and thus

to diffuser "buzz" or even more severe problems.

The experimental work done at McDonnell Douglas (e. g., Refs.

[41 and [5]) has led to analyses of viscous-inviscid interactions in

transonic internal flows, both unsteady [6] and steady [71, but with un-

separated flow; results have not predicted self-induced oscillations and

so the more difficult separated-flow problem is now being considered

by Liou [8), among others.

The work described herein is concerned with one aspect of the

interaction problems mentioned above; as such, it is closely related

to the experimental work done on diffuser flows carried out by Sajben
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et al [4, 5] . Specifically, it has to do with the prediction of the inviscid

transonic flow field with a shock wave in a two-dimensional channel,

using asymptotic methods of analysis. Previous to this work, in

studies of unsteady transonic flow in channels [9, 10, 11, 12] involving

asymptotic methods, the unsteadiness was caused by pressure oscilla-

tions downstream of the shock wave such that time dependence occurred

only in second- and higher-order terms; the flow was steady to first

order. The solutions found are valid for inviscid flows in symmetric

and asymmetric channels with small- and large-amplitude oscillations

in shock-wave position; in all cases, the walls are stationary. It can

be shown, also, that a transonic flow between the blades of a two-dimen-

sional cascade is described asymptotically as a channel flow. Because

the previous channel-flow solutions were written in terms of arbitrary

wall shapes, they may also be applied to a two-dimensional cascade flow

with arbitrary airfoil shapes under conditions where the blades are

stationary and oscillations in pressure originate downstream of the

cascade. In the present work, the same range of parameters is con-

sidered as in Refs. [9] to [12], but for the case where the unsteadiness

could be caused by oscillations in wall shape or back pressure or by

any combination of the two.

The fact that the problems considered all involve inviscid flow

fields should not be construed as being restrictive insofar as use of the

results are concerned. Because the solutions are written in terms of

arbitrary wall shapes, the effects of boundary layers may be accounted

3
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for by adding their displacement thickness to the actual wall shape; in

the range of parameters considered, the boundary layer is quasi-steady.

In practice, the calculation is accomplished by setting up a computation-

al procedure in which the boundary-layer displacement thickness and

channel-flow conditions are calculated simultaneously. Such a pro-

cedure has been used by Liou [7) who, in calculating the pressure dis-

tribution, also accounted for the interaction between the shock wave

and a turbulent boundary layer using asymptotic techniques developed

by Messiter £13]; comparison between experimentally derived and com-

puted pressure distributions showed excellent agreement.

In the next section, the general problem is formulated and the

specific problems are defined in terms of the relative orders of the

parameters. The following sections contain the solutions obtained

during the one-year period of the contract. n the final section, the

results are summarized.

4
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II. GENERAL PROBLEM FORMULATION

The problem under consideration is that of an open duct placed in

a uniform transonic flow. Inside the duct the cross-section area varies

with distance along the duct. On the outside, the duct walls are, for

convenience, assumed parallel to the incoming uniform flow. The lack

of any cowl effects on the outer flow is not important to the results

obtained; such effects are omitted only to make calculations as simple

as possible. A sketch of the duct and the notation employed is shown in

Fig. 1. The coordinates x and y are made dimensionless with respect

to L, where the total width of the duct is taken to be ZL. (Overbars

denote dimensional quantities.) The corresponding velocity components,

u and v, are dimensionless with respect to the critical sound speed in

the incoming flow, a. Another characteristic dimension of the channel

is its length, denoted by c. The channel flow can be associated with

that between the blades in a two-dimensional cascade with zero stagger

angle; the length of the channel is then the chord of the blade in this

equivalent cascade flow. For the present calculations, the flow at the

exit cross-section might be considered to exhaust into a plenum, or the

duct might be regarded as joined smoothly to fixed plane walls extending

further downstream.

In general, the nondimensional parameters associated with the

flow unsteadiness are the characteristic time (or frequency) and ampli-

tude of the impressed oscillations in pressure or in boundary position,

5



made dimensionless with the fundamental parameters of the basic steady

channel flow. Thus, if T = 1/f is the characteristic time associatedch

with walls or back pressure oscillating at a frequency f, then we define

T Th (1)

L/ a*

Here, L/!* is a characteristic flow or residence time in the channel,

because the reference velocity for this transonic flow is a ; however,

a is also the order of the time taken by an acoustic signal to traverse

the channel. The parameter T may be related to the familiar reduced

frequency used in flutter analysis, by noting that if ZL B Ts is the

blade spacing (s is dimensionless with respect to the chord, as shown),

then,

Zw
T = (Z)skr

r

where k = (2rf) (F/2) (3)
r

is the reduced frequency associated with the blade motion, based on the

half-chord.

The upper and lower wall shapes are written, respectively, as

(yw)u 1 1 z u X) + G u(x,t) (4a)

(yw)I I + 2 f I W -a GI(x, 04b)

Gu, I ((x x c ) P() + G (t)}U, (4c)

where f(u W id fI(xJ I e the steady-state wall shape, with f = f, = 0
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at the leading edges, and t is the time made nondimensional with Tch*

The motions of the upper and lower walls, which may or may not be in

phase with each other, are denoted by G and G respectively;x is

the center of rotation, with a p(t) being the instantaneous angle made

by the outer duct wall measured relative to the x axis, and G p(t) repre-

sents a plunging motion independent of x. The thickness of the "blades"

or duct walls is then O(E ) where E << 1; another way of interpreting

E is to note that the nondimensional radius of curvature of the nozzle

formed by the duct inner wall at the throat is 0( 2 ). The parameter a,

with a << I, orders the amplitude of the motion of the walls, this

depending upon the problem considered. As will be seen, it is the

relative orders of a, r, and E which determine the order of the ampli-

tude of the shock-wave motion and the orders of the velocity and pres-

sure perturbations due to the unsteadiness in the flow. Finally, it may

be noted that for a symmetric channel with symmetric wall motions,

fI(x) - f(X) and Gt(x,t) = G (x,t).

Since the flow is transonic, the undisturbed-flow Mach number M

differs from one by a small amount. The difference M -1 is taken here0o

to be O(E), which is the case of greatest interest because the steady-state

variation in channel width is O(E) and so the changes in Mach number within

the channel are of the same order as M - I. Since a is taken to be an inte-0o

gral power of E, the expansions for the velocity components have the form

2 3u--l1+u I +E u 2 +E u3 + ... (5a)
Z 3

v= V V + E 3 + ... (5b)
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where u1 , u2 , .. and v2 , .. are functions of x, y, and t. These

representations are correct throughout most of the channel, except

perhaps for thin regions close to the leading and trailing edges, the

throat, and the shock wave. Corrections for such regions are intro-

duced later when needed.

If the governing equations are written in dimensionless form, one

might choose to make the time dimensionless with respect to the char-

acteristic residence time; i.e., T = T/(_/I*). However, for impressed

oscillations on the flow T = O(Tch) and so, as noted earlier, we intro-

duce a time coordinate t made nondimensional with Tch; then T is

related to t by a coordinate stretching as follows:

- T = Tt t - (6a,b)

(L/a ) Tch

where T is defined in Eq. (1).

The relations for the shape and velocity of the shock wave may be

written as

x (T, y) x Xs(t) + E Xl(t) + . .(7 a)
s so

dx dx
s 1 s l+

s dT T Ldt dt J (7b)

That is, it can be shown [91 that 8 x / 8 y = O(E 3 / ) and that v the com-
s S

ponent of the shock wave velocity in the y direction, is of high enough

order that it may be neglected. The velocity of the shock wave u s is

positive in the positive x direction. Because the fluid velocity is near

8
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the speed of sound and the ve1ncity relative to the shock wave must be

supersonic, the velocity of the oscillating shock wave must be small

compared to the sonic velocity; i. e., I us I << 1. Thus, if T = 0(1),

for example, dxs 0 /dt = 0 so that the amplitude of the shock motion

cannot be 0(0) but is at most O(E), from Eqs. (7).

It is desired to find solutions for the velocity components valid to

O(E 2). This allows calculation of the thermodynamic variables to order

2
E also. Now, as will be seen, it is necessary to calculate the term of

3
order e in v and to apply the boundary conditions at the wall in order

to derive an equation for an unknown term in u . Hence, governing

equations for third-order terms must be derived. Because the flow is

inviscid and starts at uniform conditions, it is isentropic up to the

shock wave. Because the flow is transonic, shock waves are weak, and

the jump in entropy across the wave is O(E 3); however, the gradient

in entropy, transverse to the flow, is the important term in ordering

the vorticity, and this gradient in the y direction is at least one order

higher, i.e., O(e 4), downstream of the shock wave. Therefore, up to

and including terms O(E 3), the flow is irrotational upstream and down-

stream of the shock wave, so that a velocity potential exists. Thus,

one can write a perturbation potential in the form

2 3
'E 0 + E + E 3 3+ "'" (8)

withu = 1 + O v , uI = 1x V, = 01., etc. The governing equa-

tion for io is, then, the full potential equation [14],

9
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(a u )xx + (a v )4 yy " 2UVxy " OTT

- 2u OxT -Z v 4yT = 0 (9)

where a is the speed of sound made dimensionless with respect to a;

a is given by the Bernoulli equation for unsteady flow [14]

2 2
a-+ SL+ T F(T) (10)

where q = u + v , anda V-l) +q / = His the stagnation enthalpy,

dimensionless with respect to T* 2 ; F(T) is an integration function to be

determined.

A
Expansions for the density p, pressure P, and temperature T,

each made dimensionless with respect to its critical value (e. g.,

p = "p/-*) can be written in the same form as that for u, Eq. (5a); thus,

for example,
2

p = 1 +EPi + E P2 + (11)

A
with similar expansions for P and T. Also, it is easily shown that

2 A
a = T. The property relationship, in dimensionless form is

Y-1(- 1 As

P = pY e = p ' (1 + O(E )) (1Za,b)

where Y is the ratio of specific heats, As is the difference in entropy

s - s , made dimensionless with respect to the specific gas constant,

ii, and where in Eq. (12b) use has been made of the fact that at most

As =O(. Thus, from Eqs. (11) and (12b), one can derive the relations

10
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PP + z P1  (13a,b)

When F(T) has been found, Eq. (10) can be used to obtain relations for

the various approximations for the temperature in terms of the velocity

perturbations. Finally, the equation of state

AI
P = pT (14)

may be used to give the necessary third set of equations.

The term F(T) may be evaluated using the energy equation in

terms of the stagnation enthalpy. Thus, the rate of change of H along a

particle path is

DH 1 aP (15)
DT pY aT

If H is expanded about its value far upstream of the duct, in the uniform

flow, and the expansions for P and p are employed, then one finds from

Eq. (15) that if

T = (kEn), (16)

1 n+l
H = + E .. , (I7a)

1 k 1 (17b)
ax Y at

Moreover, from the continuity equation

+ OpU + 9PV 0 (18)
OT ax Oy

one can show, in a similar manner, that 8(pl + uI)/Ox = 0; since p and

II



u are dimensionless with respect to their critical values in the incoming

flow, and since the change in a across the shock wave due to unsteady

motion is at most of order E, then at the sonic surface p1 and u1 are

both zero for all time, and the result therefore becomes

P1 = " U1  (19)

Using Eqs. (19), (13a), and the first-order potential function, one can

integrate Eq. (17b):

1I  - k 0 lt + g 1 (y ' t) (20)

where g, is a function of integration. If Eqs. (20) and (17a) are sub-

stituted into the definition of H and the result along with Eqs. (8) and

(16) is substituted into Eq. (10), one finds that

Y+I 2
F(T) Z(Y-I) + E gl + (Zla)

2 ( Y_1 ) 2

a = + Y (1-q) + (Y- 1)(H-H ) (Zb)

and g, is a function of t alone. This is consistent with the result to be

shown later that 1 is independent of y. The potential equation (9) can

2
now be rewritten with u = 1 + x, , v = 4)y, and with a given by Eq. (Zlb):

y Yy +1) 0x xx + 2 (I + x )0xT + 4 TT + (Y" l)'0xyy
1 2

+ I (Y+ l) 4x 47 - (Y-I)(H-H )(xx+ 4,y)
2xx o X yy

Z+n 4
+ O (E E 2)

I Z 12{ sq
... . ________ .... __ -,.. .. .



The error estimate in Eq. (22) uses the anticipated results that

S=0 (E), -= O(E2 ).

Ahead of the shock wave, following a streamline upstream to the

undisturbed steady flow, one finds that g, = 0. It should be noted for

future reference that there is no change expected in these results if an

inner region enclosing the leading edges of the duct is traversed since

no new oscillations are impressed upon the flow in this region.

In order to calculate g 1 downstream of the shock wave, the change

in H across a moving wave must first be calculated. Since this change

and other jump conditions are required for shock waves moving at

velocities of varying order, it is necessary to consider the general

jump conditions across a moving wave. These conditions are derived

most conveniently in terms of a coordinate system normal and parallel

to such a wave, at an arbitrary point on it, as shown in Fig. 2. There,

q is the velocity, n and t are unit vectors in the directions normal and

perpendicular to the wave, respectively, and c n is the normal compo-

nent of the velocity c of the shock wave at the point in question; the

tangential component ct is taken to be zero. If the superscript + is

used to denote conditions relative to the shock wave, and double brack-

ets [[ 1] indicate the jump in a quantity across the wave, then

= [[h + z Z

++

qn q C qt + q (23b,c)

13



Since [Icn]] =0 and H = h + (q2+ q 2 )/2, Eq. (23) can be written as

[[H]] = cn [[q.]) (24)

and it remains to find cn and qn.

If the instantaneous shape of the shock wave is denoted by x s(y. T),

and S x -x ,then S = 0 on the shock wave and also

ST+ c . VS=0 (25a)

1 X
n V S (2 5b)

sy

where iand jare unit vectors in the x and y directions, respectively,

and the subscripts y and T denote partial derivatives. Using Eq. (25b)

for VS in Eq. (Z5a) and for n in calculating q n one can show that

XsT
c (2 (6a)

q U - vx (6b

n (2=b
xsy

Also, since nXqn'X qtT,

qt =7 2 (27)

By

The shock-wave relations for one-dimensional flow are applicable

in the direction normal to the wave, so that one can write immediately,

(%+) (q) + (a *2(8
d nu

14



where subscripts u and d refer to conditions immediately upstream and

downstream of the wave, respectively, and a is the dimensionless

critical sonic velocity in the coordinate system fixed to the wave. Hence,

(y~l) +*Z +cn

(Y +1) (a ) = H+  H-c (%-- -)
2 n

1~XT

H (XsT(Uvx 9 (29)01 + x 2 ) sy 2

sy

In all of the problems considered here, x = O(E 3/2), v = O(E2 ), u = 0(1),sy

and XsT = O(E) at most. If the shock-wave velocity in the x direction is

defined byxu =x ,then up to and including terms OE) one can write:

c n x s u (30a)n sT s

q-n O u qt o UXsy + v (30b,c)

(u - u ) (u - u s (a +) 2  (30d)

2u
(+l1) a+*) 2 u - s

?(Y- 1) s u (30e)

It may be noted that x is desired only up to and including terms O(E),

which are independent of y.

If the inviscid flow field is considered to be that found in the limit
x

as the viscosity tends to zero, such that the continuity of 4) = f 0x dxa-s
-00

+ constant through the shock wave is retained, then 4) and therefore 4T

are continuous and in fact unchanged across the shock wave. Hence,

F(T) in Eq. (10) (and (21)) may be calculated for the flow downstream

of the shock wave by calculating the jump in H across the shock from

Eq. (24) and thus the jump in F(T) using Eq. (10) at the wave.

15
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The boundary conditions to be used at each order of approximation

may be found by noting that if W _ y - yw(x,t), then at the surface of the

duct W = 0 and WT + q. VW = 0 there also. From this equation, one

finds that ay w 1 y w
v =u - + (31)w w x T at

where the subscript w denotes conditions at the wall, or surface of the

duct.

Finally, specific problems are defined by setting the relative

orders of the parameters T, a, and E. First, we choose the orders of

magnitude of a to be a = O(E Z ) and a = O(E 3). That is, the amplitude of

the wall motion is at most of the order of yw - 1, which is equivalent to

the thickness of the blades in a cascade. In general, the order of mag-

nitude of T should cover a range from T >>I to T = 0(1). That is, for

the case where the boundary layer apparently interacts with the moving

shock wave the flow is quasi-steady so that T >> 1; on the other hand,

when the unsteadiness arises because of blade oscillation, the range for

r includes T = 0(l). For the problems to be considered here, we choose

-z -I
T = O(E ) and T = O(E ). To interpret these choices, we note that a

weak pressure disturbance travels at a speed lu-a I , and it follows from

Eqs. (5a), (Z), and (8) that u-a = O(E). Since the distance is 0(l),
-I

physically the case T = O(E ) is that for which signals from the source

of the disturbance reach the shock wave in a time comparable with the

time characterizing the period of the disturbance, Tch, and the case

16
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T = O(E " ) is that for which signals reach the shock wave "instantaneously"

compared to Tch, as shown in Ref. [15]. The case T = O(1) is deferred

to future work.

The specific problems considered here are then:

3
(1) Oscillations of Channel Walls with a = O(E ) and of Back Pressure

with Perturbations O(EZ); T = O(E' 2 ).

In this case, because the walls are stationary to O(E ) and the

pressure is steady to O(E), unsteadiness in the flow velocity arises only

in terms O(E ). Hence u = O(E ),and from Eq. (7b)it is seen, there-
s

fore, that xs 0  x (t); i. e. , large-amplitude motion of the shock wave

is possible. This is an extension of the problem considered in Ref. [12].

(2) Oscillations of Channel Walls with a = O(E ) and of Back Pressure
with Perturbations O(E); T = 0(E-1 )

In this case, the flow is again unsteady in second order but the

oscillations occur at a higher frequency than in problem (1), with a

shock-wave motion of smaller amplitude; i. e., u = O(E z ) again, so

from Eq. (7b) xso = constant. Small-amplitude shock motion results.

(3) Oscillations of Channel Walls with a = O(E ) and of Back Pressure
with Perturbations O(E); T = O(E' 1 ).

Here, the flow is unstea-ly in first order, and so u = O(E). Hence,

as in problem (1), xs 0 s constant so large-ampitude motion of the shock

wave is possible.

17
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Each of the problems listed here is applicable to a channel with

an unsteady boundary layer and/or oscillating back pressure, and to

blade flutter, although for the last application problem (1) has marginal

use. In problems to be considered in the future, T = 0(1) with a = (E 3)

in one case and f = O(E) in the other. These cases will be applicable

to blade flutter with marginal application to unsteady boundary layers

or oscillating back pressures because of the small-amplitude motion of

the shock wave.

18
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M. SOLUTIONS

In this section the three problems described in section II are

considered in detail. In general, the goal has been to obtain solutions

2
valid to order E in the velocity components and thus in the pressure,

temperature, and density. As the problem complexity increases, this

is not possible without the use oi numerical methods of -olution, and in

those cases where considerable time would have been spent in obtaining

these higher-order corrections, the problem formulations for these

terms have been completed, but no solutions are given.

Problem (M): a = O(E 3), T = O(E-2

There are several regions in which the main channel-flow solutions

do not describe the flow properly; i. e., they are not uniformly valid

there. In that event, special "inner" solutions which hold in the regions

in question and which match with the "outer" channel-flow solutions

must be derived. The inner and outer solutions may then be joined to

form composite solutions valid to the desired order of magnitude in

larger regions. For the problems considered here, inner solutions

are needed at the entrance to the duct (and perhaps at the exit), at the

throat, and in the neighborhood of the shock wave. In addition, a

separate calculation must be made for the velocity and position of the

shock wave. Because the analyses are similar in all of the problems

to be considered, each of these special calculations is contained in a

titled subsection for easy reference.
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In this section, the equations used to relate a to E and T to E are

3
'=E (32a)

T 2 )-1 (32b)

where k is an arbitrary constant of order one.

Channel- Flow Solutions

In order to find the governing equations for each order of approxi-

mation from Eq. (9), it is necessary first to calculate a, the speed of

sound. As shown previously, F(T) = (V+ 1)/ (Y - 1) upstream of the

2shock wave and so a may be found from Eq. (10) immediately. Down-

stream of the shock wave the jump in H is found using Eqs. (Z4), (30a)

2and (30b), with u s = k E dxs0 /dt + • from Eq. (7b); thus, one can

show that Hd and gl, defined in Eq. (Z), are

dXo

H - H E 3 k -x[ u U l (33a)d u dt I d Iu

gl = 0 (3 3b)

Since only terms O( 3 ) are needed in Eq. (9), only terms up to and

2 2 1
including O(E 2) need be retained in a 2 , and so F(T) = (- + 1)/ ( - 1)

suffices throughout the channel in this case.

If Eq. (10) is substituted into Eq. (9), and Eq. (8) substituted into

the resulting equation, one finds the following governing equations for

z 3the *oi by gathering terms of order E , E , and E , respectively, and

rearranging slightly:

z0



Olyy = 0 (34a)

2 = (34b)

Y 2 lxx

1 1 (34c
0 y = [((+ 1) Ox~ + k l t + "( )('Y + 1 ) 0lx3 (34c)

where subscripts x, y, and t denote partial derivatives. If Eqs. (5),

with of course u = 1 + 4x and v = 4) , Eqs. (4), and Eqs. (32) are sub-

stituted into Eq. (31), giving the boundary conditions, one finds that at

the upper and lower walls, respectively,

'(X. 1 0 f' 4 . (xlt) = G u f (35a,b)
~ZYXt - 3y - 'x~ i u(3ab

4)2y (X,-1,t) f , 403y (x,-1,t) - (G*x - u 1 f ) (35c,d)

where f' = df /dx , etc.
u xU

From Eq. (34a), since there is no term O(E) in the boundary con-

ditions,

= 1 (x,t) (36)

Because 1 is independent of y, Eq. (34b) may be integrated easily.

Upon satisfying the boundary conditions on 4) 2y, given by Eqns. (35a,c),

one finds an equation involving only ix, f u and f which, although non-

linear, again is easily integrated to give:

x(c - ) (37a)

f +ft
f u (37b)

2
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where, in general, c I = cl(t). Now, c I is set by flow conditions at the

throat, the duct exit, or the duct entrance. For example, if the flow is

choked, lx = 0 at the throat. On the other hand, if the flow throughout

the duct is subsonic, conditions at the exit set cl, and if the entrance

flow is supersonic, conditions at the entrance are used. In the case of

primary interest here, the entrance flow is subsonic and choked at the

throat with a shock wave downstream of the throat. It will be shown

later that because f is independent of time and only second-order pres-

sure oscillations are considered, c I is independent of time for this

problem. Hence, if we set x = 0 at the point where fV = 0,

c I = f(0) (38)

Moreover, lt = 0, and using Eq. (37a) for 40lx , the solution for (02 may

be written simply as

a
= - fl + g 2 y + h2 (x,t) (39a)

g?. = (3 9b )

where h is a function of integration.

With and e known, Eq. (34c) may be integrated once to give

b3y. If the boundary conditions are applied at y = 1 1 (Eqs. (35b,d))

and the resulting equations are subtracted, a governing equation for

hz(x,t) is obtained. This equation may be integrated once to give h2x,

which is all that is needed for the velocity components. The result is

zz



h [f" (Z'Y - 3) + Z (40a)
h Z x 6 I (Y 0 lx

G 2 (40b)

In Eq. (40a), c 2 (t) is a function of integration which is set by given flow

conditions at some station in the duct; in general it has different values

upstream and downstream of the shock wave.

With these results, the solutions for the velocity components may

be written up to and including terms O(E )

U-I+ Eu +E u +..
I 2

: yE ) (c - f) + E [f-fiY- + g?' y + + ..+ (41 a)

v= 2v + ... = E [-ft Y+ g 2 3+... .4- b)

If the expansions for u and v are substituted into Eq. (10) with

F(T) (iY+l1)/ (Y-l1), an expansion for T =a? results; this, with

Eqs. (13a,b), (14), and (19), allows the following relations to be

derived for the density, temperature, and pressure:

2 EU E?.( 1)ui (4Za)
2 z I

=1-E (Y -1) u 1 - Ez(*Y 1) (u + -) + .. (42b)

P 1 -E Vil - E Yu 2 + ... (42c)

Thus, the solutions found may be used to calculate velocity, der-ifty,
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temperature and pressure distributions across the channel at a given

location in the flow or along the centerline or on the wall. They are

valid in the main part of the channel.

It is seen from Eqs. (42c), (41a), and (40a), that imposing a given
2

pressure oscillation of order E at the exit of the duct, say, where x =x

is equivalent to prescribing c2 + G there. Thus if we take f = f P = f" 0

at x = x 1 , and further set

(s)
P (xlpt) _Zy-3) 2 C(d + Gd't)

- U (XI It) = - 6 u1 (x)+ (y+I)u (X) (43)

then the last term describes the oscillations in back pressure imposed

on the flow. The constant c (S) refers to a steady-state back pressure,

giving a steady-state location for the shock wave, and Gd(t) refers to the

unsteady fluctuations in back pressure superimposed over the steady-

state value. Then, downstream of the shock wave, c 2 (t) is set by the

following equation:

(s) +G()(4
c (t) + G(x 1,t) = CZd d+ GdM (44)

Upstream of the shock wave, if the flow is choked,

c 2 (t) + G(0,t) = 0 (45)

if hzx is to remain finite there (see Eqn. (40a)). This is discussed in

greater detail later, and it is also shown that the solution for u can be

written in composite form such that the singular behavior of hzx at the

throat does not arise.
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It is important to note that the oscillations in back pressure were

chosen here to give flow fluctuations of the same order, namely O(E ),

as those induced by the oscillations of the wall for a = O(E 3). This was

done so that relevant comparisons of the two effects could be made.

Leading-Edge Solution

Near the leading edge x = x0 the "channel" solutions derived above

are no longer correct because the flow is no longer nearly one-dimen-

sional. A direct matching of the channel solutions with the corresponding

undisturbed-flow quantities in general is not possible. This was demon-

strated in Ref. [161 for steady flow at high subsonic speed through a

cascade with staggered blades having wedge-shaped leading edges, with

a simple correction included for rounded edges. To illustrate the need

for an inner leading-edge solution in the present context, the simpler

case of symmetric cusped edges is chosen, so that f'(x0 ) = f'(x0 ) = 0

and f "(x0) = f'(x0 ) = f"(x I ) > 0; wall motions are such that Gu(x 0 ,t)

=GI(x0 ,t) G(x0 ,t); also fu(x0 ) = fI(x 0) = 0 by definition. The leading-

edge solution is found to be necessary for providing correct flow details

near the edges, but is not needed, at least in the present applications,

for determination of the integration constants cI and c2 in the channel

solution. Solutions for wedge-shaped edges would be somewhat more

complicated, and would lead to the same general conclusion.

For symmetric cusped leading edges, expansion of the solutions

(41a,b) for u and v as x x0 gives, for the subsonic case where
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4(x) < 0 in the forward part of the duct,

/2
U Cl 1 fc"x(xx ) 2 +

+E{-- (~Y 2  ~ c(1 c 2 (t)-f~ 0 t

+. (46a)

v- E f" (x 0 ) (x- x 0 ) y+ ... (46b)

The undisturbed-flow velocity is represented (Fig. 1) as a series expan-

sion in E by

U00= + E ul0 + E U Zo+... (47)

where u1 00 < 0 for the subsonic case. The velocity perturbation

u - I = 4)x is also O(E) in the leading-edge region, and the term

(N + 1) (x Oxx in the differential equation (ZZ) is no longer small in com-

parison with 0 yy when x - x0 = O(E 1 / 2 ), corresponding to a thin vertical

strip containing the edges. For flows of greatest practical interest,

appreciable velocity changes in a small leading-edge region are probably

undesirable, and so we consider only cases in which the O(E) term is

constant there. Comparison of equations (46a) and (47) then allows c

to be related to u 1 0 , which is considered to be given:

Y+1 2
- U (48)

K Z 6

!I



.....

The leading-edge flow depends on coordinates x and y*, defined

by
x - xO

* 0 *(49)x =-)/ , y=y(9

1//2 =

where the factor K1 / is included for convenience, with K defined by

2 2 21 - M 0 = KE + O(E C=-(Y+1) u I E + O(E (50)

The perturbation potential has the form

* = u -) x+ E 2  * * *(u Ix + E (x*, ,t) + •.. (51)

A complex velocity can therefore be written as

u-i v - + E2 K 1 /2 (4) ,* - i 0*y*) + (5Z)
(E K) I/z - U0zx 2

Retaining the largest terms in the differential equation (ZZ) gives

Laplace's equation

** + = (53)

The wall boundary conditions are

* y*(X 1,t) =T K 1 / 2 x'f"(xo), 0 < x* < cc (54)

for the interior walls, and (x', l, t) = 0 for 0 <x* < oo along the

exterior surfaces; these boundary conditions are indicated in Fig. 3a.

The leading-edge solution for u must match with the channel solution for

u; that is, the expansion of the leading-edge solution as x" -o , for
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- < y* < 1, is required to agree term by term with the expansion of the

x*2 Y-
channel solution as x - x0 , shown in Eq. (46a). Finally, as x' -+ 0

outside the channel, the velocity perturbations must approach zero.

The solution to the flow problem formulated above can be found

with the help of a conformal transformation fromthe complex z*-plane,

where z* = x* + iy*, to a complex -plane. The boundaries shown in

Fig. 3a are therefore transformed to the real axis in Fig. 3b, where

the leading edges z* = ;± i have been mapped onto the points - 1.

The required transformation is

z = 1 (4 - 1) - ln + i (55)
IT 1T

If the complex potential corresponding to is F(z*) = , the complex

velocity is

F'(z*) = 3'(4) d/dz* , - i 4* (56)

A simpler preliminary boundary-value problem is obtained by differen-

tiation with respect to x, since the wall values of 0 *y* are constant.

The solution to this problem is

K 1/Zf, (x)1
Fi"(z*) 1 * - I n (I - ) (57)

Zx x* Zx y 1

Integrating, and adding a source term at the origin r = 0 so that the

matching condition with the channel solution can be satisfied, one finds

finally

Z8



K f(x) 2
* -0(l+~ 1)in(l ---

00 K I / z II (I - -L)-dI l + Q f"(x + m(t)}l

(58)

where m 2 (t) is still to be determined.

As z* -o o outside the channel (i. e., with arg z fixed,

0 < arg z* < 2r), the transformation (55) becomes z* = ,/7 + /+..-, and

expansion of F'(z* ) gives velocity perturbations

v 2 m2 (t)
u- u i - z + ... (59)

(E K) 1 / Z  Zr z*

This expression describes the velocity due to a source of strength mM(t)

at z* = 0, and provides a matching condition for velocity perturbations

in the external flow, which could be calculated if desired. For such an

outer solution the proper length scale in the flow direction would be the

duct length, so that x = 0(). In the differential equation the terms 0 yy

and (Y+ 1) Oxx (N+ 1) 4E ul0 1 xx are then of the same order (and all

other terms are of higher order) when y = 0(E 2 ), so that an appro-

priate y-coordinate would be y = (KE) 1 2 y. For x = 0() and Y = 0(1)

the largest perturbations on the uniform flow are described by a velocity

potential which satisfies Laplace's equation in x and Y. For matching

with the leading-edge result, the solution would contain one term which

represents a source at x = 0, y = 0; the remaining part of the solutions

would be determined by the prescribed unsteady normal velocity
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component at the (exterior) duct walls located, to the outer length scale,

at * = 0. The details of such outer solutions are not, however, of

special interest here.
*{

At the edges z = . i, the leading-edge solution for the velocity

has the inverse-square-root singularity associated with flow around a

sharp edge. As z* - L i,

iv 2 m 2(t) + V (x 0)/7r

u-u - ivE m)/ exp {- - arg (z*Ti)} (60)

2
7,EK / ?' 2(2Iz*T 1/.

A positive or negative value of mZ(t) + f"(x0 )/r Z implies an outflow or an

inflow, respectively, around the edges. An outflow around the edges

remains even if the source strength m 2 (t) is zero, since the flow ahead

of the duct anticipates the area decrease and accelerates slightly before

reaching the duct. Thus a slight contraction of streamtube area occurs

upstream of the duct, and the small excess mass flow spills around the

edges.

The function m 2 (t) is found from the matching of the leading-edge

and channel solutions. As x oo with -I <y < 1, the transformation

(56) implies that T - 0, and the expansion as -- 0 of the solution (58)

can be shown to give
1 2r, 2 2 1

/Z KfI/ Z (0

v -E x *y f"(x 0 ) + ... (61b)

Comparison of Eqs. (61a) and (46a) shows that
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2) c (t) + G(x0,t)
o3 1 0(Y + 1) 1

Here u1 09 uZoo ,and G(x 0 ,t) are given quantities, and c2 (t) is also

considered to be known. For a purely subsonic flow, c2 (t) is determined

by the imposed pressure downstream of the duct, as shown in Eq. (44)

for cases in which no special trailing-edge solution is needed. For

example, the duct might have zero slope and curvature at trailing edges

which are joined to fixed parallel walls downstream; or the flow might

exhaust into a plenum at x = xI, again with f"(x1 ) = f '(x ) = 0 and withu

the flow leaving the edges smoothly, i. e. , with the wall streamlines

having continuous curvature. Of primary interest here, however, is the

case of choked flow, for which c 2 (t) is determined by conditions at the

throat, as anticipated in Eq. (45) and as discussed below.

Flow Details Near the Throat

At a throat, the flow velocity may have a maximum (for subsonic

flow) or a minimum (for supersonic flow), or the flow may accelerate

or decelerate through the sound speed. In any case, if Iu - 1 <<

near a throat at x = 0, then x 0 as x - 0 and, from Eq. (40a),

h? - oo as x - 0. Since (x therefore does not remain small in com-
Zx Z

parison with 0 x near x = 0, it should be anticipated that the channel-

flow formulation may not always be correct near a throat, and that for

some combinations of the parameters a local "inner" solution in a thin

throat region might be needed. In order to understand what modifications
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might be required, one might consider a purely s '..sonic flow with the

back pressure gradually decreasing (or the undisturbed-flow Mach num-

ber increasing) until sonic speed is reached in the throat region. This

approach is taken in the following paragraphs, and two special cases

are seen to arise, corresponding to u - 1 = O(E 3/ ) and u - I = 0(E )

near the throat. In the latter case, acceleration to supersonic speed is

considered in detail.

According to the channel solution (41a), the (subsonic) velocity

near a throat located at x = 0 is

1/2
u = I E 2 ( 1- IcI - f (0) - I X f"(O) + ... Y/ + E-1 f"(O) (d- - y')

2 1 1/ 2  2 3t 1~

+ [f,'(O) - f"(O)] y + ([c - f(O)]

G(0,t) + c2 (t)

2(y + 1) 1/2 [c1 - f(o) - L f"(o) + .1../

+ •(63)

2
where c1  ('Y+ 1) Ul/2, from Eq. (48). If the flow is choked, then

c1 = f(0); i.e., (Y+l)U /2 = f(0). The second term in Eq. (63) is then

1/2
no longer small in comparison with the first term when x = O(E ) and

u - I = O(E 3 / 2 ). If a special local solution corresponding to these

orders is assumed necessary, one finds that the differential equation

and boundary conditions lead to a problem formulation for x = O(I

which is similar in form to that which leads to the solution (37a) for
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.Olx" The local solution is found to give

u = I - E f"(0) + c 2 (t) + G(0,t) 1/' + ... (64)

where the functions of t are chosen for matching as x/E - -w with

the expansion (63) of the channel solution as x - 0. It can be seen that

c2 (t) + G(0,t) > 0 for subsonic flow at the throat. The result (64)

remains correct at x = 0 and simply describes a change in fluid accel-

eration from positive to negative values within a short distance

x = O(e 1 / 2 ) of the throat. A convenient composite solution, suggested

in Ref. [17] for steady flow, is obtained by replacing the integration

constant c I with a suitable series expansion in E

2I/Z
u = 1 - E ( ) {c - f(x) + E c (t) + E G(x,t) + 1/2

1 1 2 1 [ y 2
+E {f"(x) (-y )+ I [f" (x) - f WxIy + (-4-)c -fW)]}I3 u 23 Y+l1

+ •.. (65)

The solution (41a) is recovered if the square root is expanded for

Ec c2 (t) + E G(x,t) I << c I - f(x), and if c1 = f(0), the local solution (64)

is obtained when x = O(i 1/ Z )

If now c1 - f(0) = 0 and also cz(t) + G(O,t) = 0, either the channel

solution or the composite solution implies that no difficulty now arises

when x = O(E1/2), but that when x = O(E) the largest term in u - 1 is

O(E?) and is a function of y as well as x/E. This conclusion also follows

from consideration of the differential equation and boundary conditions.
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The wall boundary condition (31) shows that y = O(E x) as x - 0. In

the potential equation (22), it is expected that (Y+ 1) x xx is no longer

small in comparison with ,yy when the local Mach number is sufficiently

close to one. Since also y = O(1), it follows from equating the orders of

these terms that a local solution satisfying a nonlinear differential equa-

tion near the throat may be needed when x = O(E). Coordinates x* and

y* are defined by

x 1/2 y y (66)
(y+ 1)/2 [_f"(o)]/

and the perturbation potential is represented in the form

=("Y+ 1)1/2 [_f.,())3I E 3 4) (x*, y*, t) + ... (67)

The largest terms in the differential equation and boundary conditions

give
4 zy*y* = 4,x* 4,X** (6 8a)

• * f;'(o) - "(0)
y (x tlot) = _ 1 - *f"(O)

G x(0,t) - G (0,t)
+ TI + 2 G .ot , (68b)

x

where
x - (y+ 1) 1 /[-f"(O)] 3/Z G (L, (69)

x

Of particular interest is the solution which describes acceleration

of the flow from subsonic to supersonic speeds. As for steady flow, (0
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is found as a polynomial in x *and y* but now some time-dependent

terms appear:

(x 1 2 X 12 12 4 Y

1 1Y 3 2  y -yf"O
{f ,t(0) - f u (0)} 1 1 3

- (G I(O. t) + Gu(0,t0 } x 1 *y*/ G (0.0 (70)

In the original variables the velocity components for x = O(E) are then

, fx ~h(0)] 1/ G(Olt)12
u~~l+E (Y + 1)1/1 + /y L)' [-f' (0) 1/2- f()( -)

+j [fl,.(0) - f t()] Y}+ (71a

V=E 3 fi() 2Ey +G (Ot) y+ 1 1) 1/ _,,(31 2 (y3 _ y)
E (y 6-"0J

+ [f"(0) - f "(0)] [2E- ('Y +)1/72 [-f"(0)1/?" (y?" 1)]

+.~ [G (Olt) + G (Olt)]} + (7 lb)

The sonic line, defined by u =1, is located at

xe G x 0t)__11/_ 1/2 2
X o(0) + 2 (+ 1) ~-f" (0) 3 y

-Y (+ 1)' /2 (0 - 1/ + (72)
2[f"(o )]1
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The second and third terms give the steady-state result, and the first

term is seen to be the value of x at which the instantaneous channel

width is a minimum. That is, the sonic line is found to have the appro-

priate quasi-steady location at each instant. This conclusion follows

only be:cause of the particular choices made here for the orders of

magnitude of T and a. For the other problems discussed in subsequent

sections, the sonic line does not remain close to a quasi-steady location.

The expansion (63) of the channel solution as x - 0 can now be

matched with the throat solution (71a) to give the results anticipated

earlier in Eqs. (38) and (45):

c = f(0) , c (t) = - G(0,t) (73a,b)

Also 1 u from Eq. (48), and so u f

(+ 1) u10 

That is, at the minimum Mach number for choking

u = 1 -E f(0)/(Y+ 1)1/2 + O(E 2  (74)

The function c 2 (t) is found here from consideration of the flow details

near x = 0, and the result of course agrees with Eq. (45), which was

obtained from the requirement that b2x remain finite as x -- 0. Com-

parison of the channel and throat solutions (41) and (71) shows that,

for acceleration from subsonic to supersonic speeds, the channel solu-

2
tions for u and v do in fact remain correct to order E in the thin

region x = O(E) which includes the throat. A special local solution

would be needed here only for flows which remain either subsonic or
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supersonic when x O(E), but which approach so close to the sound

speed that the minimum (nonzero) value of Iu - I is 0(E ). In the

present case, the ratio (c 2(t) + G(x,t)}/ lx is, however, indeterminate

at x = 0 and must of course be evaluated properly there. The combina-

tion c 1 + E c2 appearing in the composite solution (64) is equal to

f(0) - E G(0,t), which is just the (relative) area change at x = 0. This

earlier composite solution can be modified to include the case

c 2 (t) - G(0,t) by addition of a suitable O(E ) term inside the square

root:

1 / 2 EZ Z (0. 1/2

u = 1 +E (- c 1 - f(x) + E c (t) + E G(x,t) + Z [-f"(O)]

+E~~ ~ -"x 2 Y) f 'x ' f 'x ]~ .) E -f -f( x)]

2 3 2 2 Z3 y+l 1

+ .(75)

This new composite solution is correct to order 6 both near and away

from the throat, since it may be expanded for x = O(E) to give the throat

solution and for x = 0(1) to give the channel solution. Moreover, the

case c 2 It) + G(0,t) > 0 is also included, since then Eq. (64) is recovered

by expansion of Eq. (75) for x = O(E1 1/). Thus Eq. (75) is sufficient for

purely subsonic flow, with c2 (t) + G(O,t) > 0, or for acceleration from

subsonic to supersonic speed, with c2 (t) + G(0,t) = 0, and special con-

4 1/2
siderations are no longer necessary for x = O(e l ) or x = 0(c).
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Velocity and Position of the Shock Wave

Just as in the case where the back pressure alone oscillates

[9-12], the position of the shock wave at any instant is found by deriving

first the expression for the instantaneous velocity of the shock wave and

integrating this equation. The velocity is found by satisfying the jump

conditions across the shock wave. It was shown earlier that the flow is

steady in first order. If the velocity of the shock wave were O(E), then

unsteadiness would be induced in the 0(E) velocity terms downstream of

the shock wave, so it is clear that for the conditions chosen u = O(E );
s

this is consistent with the order of u found using Eqs. (7b) and (32b).

If the expansion for u given in Eq. (5a) and the value

H = (Y + I)/Z(V- 1) are substituted into Eqs. (30c,d), it is seen that the

jump conditions across the shock wave are

u Id = - u u (7 6a)

+ 4 u
u u u(7 6b)

U2d = - ?-u " uld lu +( y+1) (7b

It is clear from Eqs. (41a) that if the solution for u I with the positive

sign (supersonic flow) is associated with the flow upstream' of the shock

wave and that with the negative sign (subsonic flow) is associated with

the flow downstream of the shock wave, the jump conditions on u I are

satisfied. On the other hand, because of the dependence of uZ on y, it

is clear also that the second-order jump conditions cannot be satisfied

by the channel-flow solutions; additional calculations are required.
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Because the second-order jump conditions are not satisfied, it is

necessary to consider a thin inner region behind the shock wave, within

which some adjustment of the flow must take place. The solutions in

this inner region, which turns out to have an extent nix = o(E 1 /2), must

satisfr the jump conditions across the shock wave and the boundary con-

ditions at the walls, and must match with the outer channel flow solu-

tions in the appropriate limit. The problem here is complicated by the

fact that the shock wave, and therefore the inner region, is moving such

that Ax = 0(0). Solutions for such an inner region enclosing the shock5

wave were first found for steady flow [17]. This solution was extended

[9] to cover unsteady flow with small-amplitude motion of the shock

wave, with Ax = O(E) and T = O(E'), so that u = O(E ). In this analy-

sis second-order oscillations in the back pressure caused the unsteadi-

ness in the flow, the walls being stationary. Next, it was shown in

Refs. [15] and [IZ] that for impressed pressure fluctuations of the same

order, but with T = O(E " ) so that Ax = 0(l) and u = O(E ), the same

form of solution resulted in the inner region. Because no time deriva-

tives remain in the governing equations for this region, to the order

considered, the differences in the solution arise only from the differ-

ences in the matching conditions to be met; for T = 0(E " ) the shock is

stationary and the incoming velocities evaluated at the shock are con-

stant to lowest order while for T = O(E 2), the position of the wave and

the incoming velocities are functions of time to lowest order. As a

result, the equations for the velocity of the shock wave have the same
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dependence upon h 2 x, f, etc. in the two cases, but in each case these

2
functions depend differently upon time. Also u = E dx /dt fors si

-1) 2 sod -Z)
T= O(E ,whereas u = E dx/dt for T = O(E ), as seen from Eq.

(7b).

The analyses referred to in Refs. [17, 9, 15, 12] all involved

symmetric channels. However, Richey [18) considered the case of

asymmetric walls also, for T O(EI), and showed that a simple trans-

formation of the y variable in the inner region could be used to relate

the solutions for symmetric and asymmetric walls. His outer channel-

flow solutions have the same form as those found here to second order,

even though T is of different order in each problem, because in both

cases the flow is steady in first order and the walls are stationary to

second order. In view of the above remarks, it is clear that in the

inner region behind the shock wave, those solutions found before, modi-

fied for asymmetric wall shapes following Richey [181, hold in the

present case. The composite solutions for u and v, formed from the

inner and channel-flow solutions, and the equation for u are as follows:

u=-+ + (c + C Y+gy+(77a)

2 5/2 A +.
v=E [-f'y+g] +E (77b)

A
t = 0 for x <X + .. (77c)
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n+l

3 n lt D i  exp(--Y + -I) u s n n 
A

n= 1,3,5, / 2

00 (_l) n/2 A co 1r
IIx (- n-wm x

f0 nn,4,6,., 3 exp(-T/ +i2u cos (fl Y)z

for x>x s +.. (77d)

A -/
x (x - xo) " (77e)

S4 Us 4k xs0 f0'u

4 U - 4k ) dx o) + (h " - u (77f)

where ulu is given by Eq. (37a), with the positive sign, evaluated at

x = xs0 + • • • and is thus a function of time, and where the subscript 0

indicates that the function is evaluated at x = xs 0 . The equation for

Us /E shows only the first term in the expansion since that is all that

is desired here. The composite solutions for u and v are uniformly

valid through O(E 2 ) in u and O(E 5 / ) in v throughout a channel in which

a shock wave occurs, as long as the throat or leading-edge regions are

avoided.

If Eqs. (40a) and (76a) are used to find (hax) and (hzx) and
d .u

the results are substituted into Eq. (77f), one finds, finally, the

differential equation for the position of the shock wave to lowest order,

x 0 4k dxso0 1 [- 2- ( + 1)Uu 3 + czd (78)
42yxs3 .2

(y+1) dt (y+ 1)Ulu iu c (7

where cu and c d are the values of c (t) used upstream and downstream
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of the wave, respectively. If the example discussed previously is

considered, where the flow is subsonic entering the duct and acceler-

ates to supersonic velocity upstream of the shock wave, with pressure

oscillations impressed upon the flow at x 1 > x., then Eqs. (44) and

(45) hold for c2d and czu, respectively; then Eq. (78) becomes

dx
4k so I ZN ( + 1)U3

+ N(t)I (79a)
Y + 1) dt (Y lu 3 lu

N(t) = c (s) + Gd (t) + G(O,t) - G(xlt) (79b)

Although analytical solutions may be found for special wall shapes and

forcing functions, the calculation of x 0 generally will involve numeri-

cal integration of this equation.

Motion of the Shock Wave Upstream of the Throat

Accordingto Eq. (78) or (79a) the shock-wave velocity dx s 0 /dt -o

if the upstream fluid velocity ulu - 0, as occurs if the shock wave

approaches the throat as the time t approaches a value t ,. Expanding

Eq. (79a) as xs 0 - 0 and t t* , and then integrating,

4k dx N(t) + • (80a)+l dt (C + 1)1/2 [ -f"(0) 1 / 2  s

2 (- + 1)1/ Z N(t*)

k[-f,,(0)l 1/ 2  (t, - t) + ... (B0b)Zk [f()

where N(t ) = Cd(t* ) + G(O,t,), in accordance with the definition (79b).

Z4d

42



If an initial shock-wave position has been specified, the complete solu-

tion for xso(t) can be regarded as known, and therefore t, is known.

When the shock wave is near the throat, a different form of solution

is required. It is shown below that the shock-wave velocity increases

in order of magnitude as it passes through the throat region and

becomes still larger as it moves further upstream in the duct. The

end results obtained from the analyses of this and the preceding sec-

tion are expressions for the shock-wave velocity in terms of position

at all points of an accelerating channel flow which is subjected to pre-

scribed small oscillations in wall shape or back pressure.

The composite solution (65) written for the velocity in the region

downstream of the shock wave gives

u = 1 - E ( ) {f(O) - f(x) + E c (t) + E G(x,t)} + O(E ) (81)
'Y+l1 2d

where in general cZd(t) # c2 u(t) and so czd(t) # - G(0,t); i.e. , N(t) t 0.

As the shock wave moves upstream, the perturbation in fluid velocity

behind the shock wave found from this solution is O(E 3 / ) when

x = O(E ):

3/2 2 l/2 2 1 /2 2

u d = 1 - E (-) (- 2'- f"(0) + N(t)} + O(E (82)

The velocity just upstream of the shock wave, since c Zu(t) + G(0,t) = 0

and f"(0) > 0, is

u + 3/2 "2 x /) {"  f"()}1/ + O(E ) (83)
u Y +1 E 1/2 2
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1
The shock-wave jump conditions (30d, e), with H (y + 1)/(y- 1), give

us = {(u .)+ (u -l)} +.- (84)

The shock-wave speed u a dx s/dT is therefore O(E3/ ), and the

shock wave remains within a distance x = O( I / 2 ) of the throat for a5

time interval AT = 0(c I). Since t = kE T, the interval in t is small,

namely At = O(E). The shock wave therefore passes through the thin

region x = O(C 1/2) at essentially a constant value of t. For matching

with the downstream solution, as shown below, this constant has the

value t, obtained in Eq. (80b). Hence t is replaced by t* + O(E) in the

function N(t), with us expected to be obtained as a function of (t - t*)/E.

Since u = kEz dx s/dt, Eq. (84) becomes

2 dxs 3/Z +I) {x)

dE -_ - = E4 [-f(0O 1/
dt 4 4 /

z

- f"(o) + 2 N(t,)] 1/2 +... (85)

The shock-wave position therefore has the form

x = E 2-N(t)f"(0)] 9' (t + ... (86a)
s s

= I ( + 1)1 [- f"(O)] 1  (t - t:.)/E (86b)
4k

Integration gives an implicit solution for s (t
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t* -I - (I + g* /1/2 " + (l + g ,z) / z
sl 8 sl~

- in s + (1 + s1 (87)

As w -o and t- -oo, this solution gives
si

(t*/ +  (88)

The matching as x 0  0 and Vs " ao requires that the largest terms
so s

of Eqs. (80b) and (88) be identical, when written in common notation.

It is this condition, anticipated above, which requires that the time in

Eq. (86b) be measured relative to the value t* obtained from the down-

stream solution.

Next, as the shock wave moves upstream from the throat, for

* -oo and t co, it is found from the solution (87) that In (- *)
s i

-(t* )+ ... , or

[ N(t,) ]1/2 2 (O (y+lF2[:(O)]l/2}

Xs -2 e f"(O) e

(89)

When x = 0(0), the channel solution (3-a) has the subsonic value5

(minus sign) both upstream and downstream of the shock wave, so that

u Id U lu, and the shock-wave velocity from Eq. (84) becomes

1
u s = ('+l)u + ... . That is, using also Eq. (21b), to order e

the shock wave travels upstream at a speed u = u- a + ... ,and the

order of magnitude of u5 has now increased further, so that u =(E

The solution for the position of the shock wave as it moves upstream
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from the throat, with x = 0(1), must have the form (89) as x -4 0.

s

That is, the solution for x = 0(1) must match with the solution for

x = O(E 1 / 2 ) at earlier times. This condition suggests a representation5

of the shock-wave position in terms of still another time coordinate, as

fo lows:

x =x + (t+) + "" (90a)
s sO

, t-t, ln(l/E)
kE Cy + 1)1/2 [-f"(O)]I/2 (90b)

Substitution in the expression (84) for the shock-wave velocity gives

dx +so .Y+ 1 1/2f() --
-I = - f(x+ )} I / z  

(91)dt +  -7 f!)- s

Since f(O) -f (x1+ x +2 f11 (0) as x+ -, 0, the solution as xo -+ 0
s0 2 sO s so

and t +  -o has the form
1 1/l2 1/2

+ - (Y + 1) [- f"(O)]1  t +

xso = A e + (92a)

N(t,) 11/2

A -e"(0)J (92b)

where A is an integration constant. Comparison with Eq. (89) shows

the exponents are identical, and the requirement that the solutions must

match has been used to give the value of A. This result provides an

initial condition for the differential equation (91).

The simplest special case arises for a duct of length 2x 1 , with

x 0  -x 1 , having symmetric parabolic walls described by
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2

f(O) - f(x) f(O) 2- (93)
xl1 

2

where f(..x 1 ) = 0 and the choking condition (74) gives f(0) = (Y+ l)u .

Integration of the shock-wave velocity (91) shows that the solution (92),

with f"(0) = - (y + 1) u 120 /X2, remains correct for the entire shock-wave

motion from the throat x = 0 up to the entrance x = - x1 . The time

required for passage of the shock wave through this region is found to

be
kx E 2 (Y+1) ul 2 e

(Y+1) (-Ulo0) n N(t*)

The shape (93) implies wedge-shaped leading and trailing edges, since

f (.x1 ) 1 0. A simple shape having cusped edges is given by

2 iTx (5
f(O) - f(x) = f(O) sin 2 (95)

where again f(i-x 1 ) = 0 and f(0) 2 Eq. (91) can be inte-

grated, and the integration constant is found by matching with Eq. (92)

as x+ - 0, now with f"(0) = -L (Y + 1) u /x . The shock-wave
so 4101

position and the time required for the shock wave to move upstream

through the front half of the duct are found as

+ N 1/2 ('Y+ 1)T (-ul1)t+

tan - 8 (t ) -o e 4x, (96 a)
ta 4x 1 1 8(Y + 1) e u .

2 x 1 k 8(Y+l)eu 2

(+ 1)r (-U 1 ) Nn N(t,) (96b
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The results (94) and (96b) for different shapes show identical dependence

on the parameters; only the numerical factors are different.

While the dependence of the solutions on the parameters is shown

explicitly in these special cases, applications for arbitrary shape and

motion of the walls, and arbitrary oscillations in back pressure, will

require numerical solution. In the preceding derivations the shock-

wave velocity u s is found from Eq. (79a) for x = 0(1) downstream of

the throat, from Eq. (85) for x = O(E / 2) near the throat, and from

Eq. (91) for x = 0(1) upstream of the throat. For numerical calcula-s

tions some procedure is needed to indicate what solution is to be used

at each particular location. It is probably most convenient to replace

these three representations by two composite expressions, one for

2
x sa 0 and one for x -: 0, and both uniformly valid to order E . This

formulation can be accomplished for x < 0 by adding the downstream

and throat representations, and then subtracting the common part found

for x << 1 and x >> E ; for x < 0 the upstream and throat solutions

are added, and the common part for Ix I << l and I/x >>2E is sub-
1xI s ub

tracted. The result for x > 0 is
s

3 s1 + 2 X f0 1/2
fI x -+ 3/2 Nt)x [-f"(o)] 1/2

5

[f(O) - f(x )] 4 1/2

2
-- i f"(0) + 2 N(t)] 1/2 + • • • (97a)
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and for x < 0

S

1/2 (1/2 x2

us = E Y- I) [f(0) - / - E 3/ 2 + [1) -E f,1(0)+ 2N(t)]1/"2 s - 4 E

E L (Y+ 1)l/2 [- f"(0)] 1/2 + . (97b)
4s

2
whereu =dx /dT = k E dx /dt.

Discussion

The solutions presented here hold for unsteadiness caused by any

combination of impressed oscillations of the wall Shapes or the back

pressure. As a result, they allow easy comparison of the effects of

one as opposed to the other. Although the results presented here for

the channel flow have a superficial resemblance to those given pre-

viously [15] for a study of channel flow with only oscillations in back

pressure, there are some significant differences, as will be see,,. In

addition, the earlier analyses have been extended here to provide

detailed solutions for the leading-edge and throat regions and for the

shock-wave motion upstream of the throat.

2
The velocity of the shock wave, us k E dx s/dt + ... , and its

position xs0 are given by Eq. (79a) and its integral, respectively. It

is seen from Eq. (79b) that the forcing function for the shock motion

N(t) could have the same form for either oscillations in back pressure

or in wall shape; i.e., either G(x,t) = G(0,t) = G(xit) = 0 with Gd
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equal to some function of time, or Gd = 0 with G(x,t) such that

G(O,t) - G(xl,t) equals the same function of time. Hence, insofar as

the motion of the shock wave is concerned, one can find an equivalence

between wall and back-pressure oscillations. This does not apply to

the velocity and pressure distributions, however, as shown by the

equation for hZx (Eq. (40a)), which appears in u 2 and P2. No matter

what the boundary conditions may be, G(x,t) depends upon x as long as

a pitching motion of the walls is involved, so that cz(t) + G(x,t) also

depends upon x; on the other hand, if only oscillations in back pressure

occur, G = 0 and cz(t) depends only upon Gd(t) and is independent of x.

This point will be illustrated later in an example in which the differences

are calculated for the flow upstream and downstream of the shock wave.

It is of interest to note that neither the solutions for the motion of

the shock wave nor those for the distributions of velocity and pressure

depend upon x , the center of rotation of pitching motion. This is

shown in Eq. (79b) for the shock motion; the same result can be demon-

strated for the velocity and pressure distributions by forming c + G

upstream and downstream of the shock wave, using Eqs. (44) and (45)

for cZu and CZd. In all cases, the difference between G functions, each

evaluated at a different point, is found; hence, the x P(t) term cancels.c

The net result is, then, that because it is evidently area differences

which are important in determining flow conditions, the center of

rotation is not important.
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All of the solutions presented so far have been discussed in terms

of application to ducts in which the entire upper and lower walls are

oscillating. However, they may be applied also to the case corre-

sponding to the flow through a channel with stationary walls but with a

separated boundary layer downstream of the shock. That is, we

imagine now an equivalent wall shape which is stationary (G, = G = 0)I u

for x -5 x say, where x > x, but which is hinged at x = x and oscil-

lates for x > x . It is seen that the solutions for the velocity compo-c

nents and thus the pressure, temperature, and density present no

problems in this application and will not be pursued further here. How-

ever, the equation for the velocity of the shock wave exhibits interesting

behavior which is worthy of discussion.

The equation which holds for dxs 0 /dt is Eq. (78), where now the

flow upstream of the shock wave is steady, but ulu (Xs ) varies with

time because it is evaluated at x s(t). If we consider the case where

the walls are oscillating as discussed above and the back pressure is

oscillating at some point x = xi, now with x I > xc , and where the flow

is choked at the throat, then this equation reduces to Eqs. (79) with

G(O,t) = 0. Thus,

4k dxso I-- -L (Y +)u3 + c(s)+ Gd(t ) - G(x t0 (98)
(Y+l) dt (Y+l)u 3 lu 2d d

This shows that the effect of the wall flapping at some point downstream

of the shock wave has the same effect on the position of the shock wave
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as an oscillation in back pressure. Moreover, it is seen that it is the

area change at the "end" of the duct, x, which is important insofar as

the position of the shock wave is concerned, since if G(x 1 ,t) = 0, there

is no effect whatsoever; moreover, the shape of the oscillating wall

between x = x and x = x I evidently has no effect on the position of the

shock wave in any event. Finally, in this case, the motion of the shock

wave is dependent upon xc, the center of rotation of this flapping wall.

Example Calculations

It has been shown that for the orders of the parameters associated

with problem 1, the effects of the oscillating walls and back pressures

are interchangeable insofar as velocity and position of the shock wave

are concerned, but not in the pressure and velocity distributions. In

these distributions, the differences between the two cases are seen in

the second-order terms, the first-order terms being independent of

time. As an illustration of this feature of the solutions, reference is

made to the results given in Ref. [15] ; in that analysis, only oscillations

in back pressure were considered, the walls being stationary. For

example, Figs. 4a,b,c and 5 (Figs. 6a,b,c and 7 in Ref. [15],

reproduced here for easy reference) show isotachs and wall and center-

line pressure distributions at various times and u and x as functions

of time for the following conditions, where the notation has been changed

to agree with that in the present report, and where it should be noted

that the calculations were made for a symmetric channel, so that fu f f :

5Z
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f (x) 3 18 20 x 1

- 271 (x - ) 4- 4 (X -2) 3 1 !5x52 (99)

=0 x > 2

G d(t) 3 3(Y +1) sin (2t) t : 0

=0 t < 0

E 0. 1 'Y=1. 4 c (s -L (Y +1) ( s

(s)0

Here u (s ((s)where x (s) istelcto of the shlock wave in

stedy low fo whchG d 0. Since no oscillations in wall shape were

consderd, G = u =G =0. Thus the values of c 2(M to be used in

h. andthu inu.,p.,etc.), upstream and downstream of the shock

wave, and the equation for dx so/dt (Eq. (79a) ) are, for this case,

C Zu + G (x,t) C c2(t) = 0 (100a)

c + G(x,t0 c c ()+ G (t) = c()+ 3 (y + 1) sin (2t) (100b)Zd Zd Z d Zd

(4) x 90 (1 - [TY(Y+l)u + c (s + 3(Y+1) sin (Zt)] (100c)

where k = (T 4E ).It is important to note that in this case, as illustra-

ted by Eq. (100a), the flow upstream of the shock wave is steady.



If we now consider flow in a channel with symmetric oscillations

of the wall, so that G, = Gu = G, and with no oscillations in back pres-

sure, so that Gd= 0, we see that Eqs. (79) and (100c) are the same,

i.e., u and thus xso are the same, if

G(0,t) - G(xIIt) = 3 (y+ 1) sin (Zt) (101)

Referring to the definition of G in Eq. (4c), one sees that there can be

no plunging motion of the walls, but that there is symmetric rotation;

i.e., G= (x-xc)P(t)-- G = Gu . From Eq. (101), then, one finds the

equation for P(t), with the result that

(x-x)

G -c 3(y+l) sin(Zt) (lOZ)
xI

Hence, if the walls oscillate with this function G, if Gd = 0 so that the

back pressure is constant, and if all other conditions are as in Eq. (99),

the shock-wave velocity and position will be as shown in Fig. 5.

From Eqs. (44) and (45), and (10Z), it is seen that the values of

C2 (t) + G(x,t) in hax are, upstream and downstream of the shock wave

respectively,

c3 + G(xt) 2 3 (Y+ 1) sin (Zt) (10 3 a)

S(x -x)

cd + G(x,(t) cS) + 3 (*Y+1) sin(2t) (103b)CZd + xt Zd * Xl

Hence, the isotachs and pressure distributions will vary from those

shown in Figs. 4a,b,c by the time-dependent terms in Eqs. (103),

which occur in u2 and p?' the terms of order Ez .
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Numerical computations were carried out with Eqs. (103) for

c + G in hzx and with all remaining conditions as in Eq. (99). In Figs.

6a,bc, isotachs and pressure distributions downstream of the shock

wave are shown at the same times as in Figs. 4a,b,c, for comparison.

In Ref. [15], the flow upstream of the shock wave was steady so no

isotachs were shown in that region; here isotachs upstream of the shock

wave are not shown only because there is nothing with which they can be

compared. Upon comparison of Figs. 4a,b,c and 6a,b,c, one sees

that even though the position of the shock wave is the same, the isotachs

and pressure distributions are quite different. Two points are of partic-

ular importance. First, attempts were made to find isotachs with the

same values as those shown in Figs. 4ab,c so that the differences in

shape could be noted, but this was not always possible because velocities

of the desired value did not occur; hence, significant differences between

the two cases do exist. Second, it may be noted in Figs. 6a,b,c that

the location of the sonic line (P = 1) does not coincide with the throat

in steady flow, x = 0, whereas it does in Figs. 4a,b,c. The reason for

this is, of course, that the computations shown in Figs. 6a,b,c are

for the case where the walls are oscillating so that the position of the

minimum area, and thus the sonic line, changes with time; this does

not occur when unsteadiness is caused by variations in back pressure.

It should be noted that the distances to the sonic line found from com-

putations of the pressure distribution and shown in Fig. 6a were checked

using Eq. (72), with excellent agreement.
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In previous work described in the references, the motion of the

shock wave through the subsonic flow upstream of the throat was not

considered; hence numerical computations for us and xs 0 stopped at

the throat. Since this analysis has been completed now, with results

given in Eqs. (97), it is possible to extend the numerical work pre-

sented in Refs. [lz] and [15] for tv example flows. Again, the results

are valid for oscillations either in back pressure, with Gd as in Eq. (99)

or in wall shape as in Eq. (102). The duct considered is that for which

the wall shape is symmetric about the throat, so that f (-x) = f(x) with

f(x) given in Eq. (99). The two cases chosen are cases (a) and (c) of

Fig. 15 in Ref. (15], and the results I,r xs>0 are taken from this

report. For each case, E = 0.1, T = 150 and if oscillating back pres-

sures are considered, Gd = (Y+l) 4.5 sin(Zt). For case (a) xs) = 0.75
ss

and for case (b) xs0V= 1.5. The composite solution for xs0 < 0, Eq.
sOs

(97b), was integrated numerically using as initial points those given in

Ref. [15] (Fig. 15) at xs 0 = 0. The results are shown in Fig. 7. In

case (a), the shock wave moves upstream of the throat very rapidly,

moves out of the duct and disappears. At a later time, it forms again

at the throat, moves downstream and then upstream, again gaining

velocity rapidly as it moves in the subsonic flow field. This process

repeats itself as the back pressure (or walls) oscillate. The shock

wave can never reverse its direction in the subsonic flow because the

velocity relative to the wave must be supersonic. In case (c) a similar

situation occurs as the wave moves upstream and out of the duct. As
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shown in Ref. [15], however, conditions are such that after the wave

forms again at the throat and moves downstream, it never again moves

upstream as far as the throat; this behavior is not shown here.

Problem (2): a = O(E 3), T = 0(E
"1)

In this problem, the amplitude of the oscillation of the walls

remains of the same order as in problem (1), but the frequency increases

such that T becomes O(EI); oscillations in back pressure again occur in

zterms O(E ). For this case, then, we set

a=E3 (104a)

T = (k E (104b)

The equations for the wall shapes are those given in Eqs. (4).

Channel-Flow Solutions; Velocity and Position of the Shock Wave

Because the wall shapes and thus the boundary conditions are

unchanged from problem (1), the result that the flow is steady in first

order holds here also. Therefore, the shock-wave velocity is again

O(E ), and from Eq. (7b) it is seen that, if T = O(E ), is constant

and the shock-wave motion now has an amplitude O(E); thus,

u- kE dxsl/dt + • Also, because it is only in second order that

a dependence upon time is found, we note that, using Eq. (8),

2

OT - T 0Zt +  O(E3
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so that upstream of the shock wave the Bernoulli Eq. (10) is again such

that F(T) (Y +1)/(Y -) + O(E2). Using Eq. (Z4), one can see that

since u (ud -u) O(E3), H H = (Y+I)/(Y I)+O(E3 ); since only

terms to O(E ) are required, the stagnation enthalpy may be considered

constant throughout the flow field.

As mentioned previously, Richey [18] considered the problem of

flow in an asymmetric channel with oscillations in back pressure only,

2 -1 3
in the terms of order E , with T = O(E-). Because a = O(E ), the

oscillating walls enter the boundary conditions first for 4 3y, and thus

affect only hZ. The remaining terms in the solutions in the channel-

flow region and the region enclosing the shock wave have the same form

as those found by Richey [18]. As noted previously, these solutions

have the same form as those found for problem (1), even through T has

a different order for each case, because in both problems the flow is

steady in first order and the walls are stationary to second order. The

common solutions and therefore those that hold for this problem are the

solutions for 4l and '0, contained in Eqs. (37) and (39). Because only

2
these outer terms and boundary conditions up to terms of order E are

involved in the analysis of the inner region behind the shock wave, the

solutions in that region are also unchanged from those presented in

problem (1). Hence, the composite solutions given in Eqs. (77) hold

here as well; moreover, the equation for u also holds, but it represents5

a differential equation for x ; i.e., Eq. (77f) becomes
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Us 4k s + (

(Y+l) 2 - (Y+I) dt - (h2x + (h) -- - u lu (105)

It remains only to find h2 x to complete the solutions to O(E ).

If the expansion, Eq. (8), for and Eqs. (104) for a and T are

1
substituted into Eq. (Z2), with H = H -(Y + 1)/(Y - 1), and into the

boundary conditions, Eq. (31), one finds the following governing equa-

tion and boundary conditions for 43' where substitutions have been made

for the various derivatives of 02:

Zkh + (Y+l)i (-L +g- +hz)

3yy Zxt L4lx 2 1 gx

+ (2y-I 1) )Ix (106a)6 lx

3(x ' l ' t) = V 4, fu + G (10 6b)3 y lx u ux

103 y (X,-lt) = 'lx - G Gx (10 6c)

Next, if Eq. (106a) is integrated, the boundary conditions are applied,

and one of the resulting equations is subtracted from the other, one

obtains the governing equation for h

2kh zxt+ (Y +l)(lx h2x) = (y+I) , x 6 6 x +  (107)
x x

where f and G are defined in Eqs. (37b) and (40b), and where

(Y+ 1 ) 0lx'blxx = f' has been used in deriving Eq. (107). Upon com-

paring this equation with Eq. (40a), the expression defining hZx in

problem (1), one sees that the effect of T being smaller by 0(c) is
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to introduce the time derivative of h2x into the governing equation.

It is possible to separate the effects of oscillations in back

pressure and wall shape by making the following substitution

f"l Z-33+ t k
h" - 3 M k _tLf dx ) +R(xt) (108)

1 "x

where R(x,t) contains the effects of the wall oscillations and the

functional form of M depends on the back pressure at x = x1 , as well

as upon R(xlt). That is, if Eq. (108) is used for h x and the condition

on pressure is applied at x = x 1 , then, as in problem (1),

(s)+Gdt 0)
M(t) + R(x ,t) -c- + Gd(t) (109)

If Eq. (108) is used for h2x in Eq. (107), one finds the following

governing equation for R(xt)

2k + R= G =P (110a)

- 2t (110~b )

'where Pu and P,, defined in Eq. (4c), are associated with the pitching

motion of the walls. Thus, it is seen that the equation for R(x,t) along

characteristics and the equation defining the one family of character-

istics are, respectively,

dR (Y+1) (11 la)
dt 2k (a

dx + 11lb)
dt 2k I x
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Since it does not appear possible to find analytical solutions for

general wall shapes, numerical computations must be employed. How-

ever, for special wall shapes, it is possible to find analytical solutions

which illustrate the important features of the flow field.

Analytical Solutions for a Simple Case

Analytical solutions for special cases, while lacking generality,

are valuable in giving a qualitatively correct indication of the physical

effects to be expected in general, and in showing the manner in which

these effects will change as the important parameters are varied. Such

solutions can provide an important guide for numerical calculations,

serving as reference solutions exhibiting the trends which should be

anticipated. In the case considered here, the flow accelerates through

sonic speed at the throat, and a shock wave is present further down-

stream. The back pressure is held constant, but the walls undergo a

simple harmonic symmetric pitching motion. The replacement

P(t) = Peit is made in Eq. (4c), which becomes

G (x-xfl 0et (1I2)
u, c )

where t = E k T, so that the (scaled) frequency implicit in Eq. (112) is k.

This form of time dependence is particularly significant because an

arbitrary periodic function of time can, of course, be represented by

a Fourier series, and the problem formulated above is linear with

respect to the wall motion, so that solutions for more general periodic
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functions can be constructed by superposition of solutions having the

form derived here. To simplify the problem as far as possible, the

walls are taken to be symmetric, with the parabolic shape f(O) - f(x)

1 (Y+l)(u l X/x ) for -x I <x <x as given by Eq. (93), where

S I u by the choking condition (74a); here we have taken

x0 - x 1 . This shape might represent the first term in a series of

polynomials representing a more general wall shape. Analytical solu-

tions may, however, be impractical for more complicated shapes,

especially because the shape function f(x) enters the solutions in a non-

linear way.

For the case considered, the channel-flow solution for 4'ix is

given by Eq. (3 7a), with c I = f(0) = 1 2 from Eqs. (38) and
2 100~u

(48) or (74a). The differential equation for hZx is then found by sub-

stitution in Eq. (107). The results are, for -x I <x x I ,

Olx I u 100 Ix/x 1 (113a)

Zkh~x (Y (+ 1) (1 Ul o/x 1 ) (x hx

=poeit ± (-Y+ 1)(UlI/X -3 (,+1) + (__Y) x

(113b)

where the upper signs are used everywhere upstream of the shock wave

and the lower signs are used downstream. The solution ahead of the

shock wave, required to be finite at the throat x = 0, is easily found by

considering separately the steady-state part and the simple harmonic
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unsteady part. The result is

U 1 0 0 2h 1=(Ll(-) {- (Y +1)+ (3 -2Y) x 2 }

+ POX 1  2)1/2 e (tX)(I 14a)
(+1) 1U01 (l+v

2kx 1
v = tanX = (+ 1) l (l14b)

If a is evaluated from Eq. (Zlb), it is seen that the speed lu-al at which
1

small disturbances travel upstream becomes u - a =- (+l)Eu +..-
00 002 1O

outside the channel. The parameter v is a reduced frequency based on

this velocity and on the frequency k E and the length x I . The phase lag

angle X increases from zero to ir/2 as v increases from zero to infinity,
1 2 2

and X increases as the magnitude of the wall curvature I (-+)uZ /x I
2 ( lu 1 /0x1

decreases.

As for problem (1), a local leading-edge solution is required in a

thin vertical strip containing the edges and having width O(E /2). In

the present example, however, the edges are wedge-shaped rather than

cusped, and so a different solution is needed. The series representation

for the perturbation potential now has the form

2 * ***= (uM- 1)x+E *3 (x ,y ,t)+ ... (115a)

x +x
x 1/2 y = y (115b)

(KE) 1 / 2

63



The differential equation and boundary conditions for - are
32

+ = 0 (11 6a)

2 2

W . 1 (x 1- 1,t 0 =Tf 'l-x 1 )  (Il16b)

zy

The perturbation velocity must decrease to zero as x" + y - co out-

side the channel and must match with the channel solution as x* -, c

with - 1 < y* < 1. The conformal transformation (55) again maps the

flow onto the upper half of the complex -plane. The solution is

(KE)/2 (u-u )-iv= f '(-x In (I- 1 + z + .. (I17)
00IT 2 -1)

where A is to be determined. As z = x + iy - o outside the channel,

the right-hand side becomes E2 A -2f'(-xI)/r}/2Trz* + ... , the form

for a source at z = 0, and at the edges z = =i the solution has an

irwcrse square-root singularity. Each of theae effects, if nonzero, is

stronger by a factor O(E - / 2 ) than for the previous case of cusped edges.

As z - 
- c inside the channel,

(KE)1 / 2 (u-u) iv = EZ f(_X + /

1 ) 12

+ - + iy E 2 A + (118)
T +

For the choked condition, the channel solution for u = I + 4x will have

no term of order E 3/2 as noted below. It follows that the matching
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with the channel solution requires that A have the constant value

2

A (-Xl) - (119)
Tr Ir x 1I

That is, A < 0 and the solution (117) evaluated as z* - i then shows

that in this case there is an inward flow around the leading edges.

The source strength A - 2 fV (-x 1 )/ lr is zero; i. e. , to the order con-

sidered here, no source term would appear in the solution for the outer

flow. Thus the strength of the source seen by the outer flow has the

-same order of magnitude for both wedge-shaped and cusped leading

edges. This is as expected, since the sour cest r e-g+-

depend on the edge details but on conditions further downstream. Again

the chan.el Polutior has been completed without knowledge of the

leading.-edge &.3.,ution, but near the channel entrance the flow is two-

dimensicnal in the first approximation, and the leading-edge solution

is essential for a correct flow description there. If desired, the more

complicated term of order E 5/ in 4 could also be calculated, in the

manner of Ref. [161.

In a thin region near the throat where x = O(E), it can again be

shown that a polynomial solution in x and y gives a correct flow descrip-

tion. As in the discussion preceding Eqs. (66) and (67), it is anticipated

that a nonlinear differential equation may be needed, and the wall bound-

ary condition must also be satisfied. These considerations suggest the

expansions
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U=~~~ ~ ~ ~ 1 -x Yt) I2a

V =E 3v 1 (x* 'yt) + --- (IZ20b)

* (120c)

The differential equations and wall boundary conditions can be written

a s

v (* =(+ 1) U1 * + Z k u (121a)1y I xit

v* * * (iZlb)
Vlx~ ly

v(x, -+I, t) =T {x fu"(0) - Gx(O,t)W (l21c)

where the wall shapes and wall motions have been assumed symmetric

in Eq. (121c) but thus far are otherwise arbitrary. The solutions are

*~ ={~ 2 ~} 2 * t f"(O){/2* y2 }I + x(t) (1 22a)

V* = f*.~ +_ (, + 1)11/2 {f,,(0)1i 3 1? (Y _ y) + y G (0, t) (I 22b)

V1  6 - 'i x

0 =2Zk ft-+ (Y + 1 )'I 1? f "(0)) 112X - G (O't) (I 22c)
at x

In the present special case, X(t) is found as

PO it 
G 3

Zik + (Y- J 1  13
x I

Thus, as anticipated above, no term of order E 32is needed in either

the throat solution or the channel solution for u; if such terms had been
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introduced, the differential equations combined with the boundary and

matching conditions would have shown that the terms must be identi-

cally zero.

The channel solution downstream of the shock wave requires

additional terms from the solution to the homogeneous equation so that

the downstream boundary condition can be satisfied. The result is

2 (S)
CZd 1l

h (u. (.+1)+ (3-ZY)x }- l2 I

PO xl Xl x)ei(t+×
Ulo( va I - Lexp (i vIn -I ) e(124)

(,y~l) Juj

uYl I 1 W, +V 2) 1/2  1

The constant c (S) has the same meaning as in Eq. (43), with a value

determined by the constant prescribed back pressure. If the back pres-

it
sure were to vary with time as e , the integration constant chosen for

the solution to the homogeneous equation would be different. It can be

seen that this solution to the homogeneous equation corresponds to the

function M in Eq. (108), having constant phase t + X + In (x/xl) along

the characteristics dx/dt - x/v and hence describing disturbances

which travel upstream at this speed from the channel exit. Again the

particular solution gives the direct response to the motion of the walls.

The in-phase part has a different sign than in the upstream solution

because positive P(t) now implies a velocity decrease, instead of an

increase as was true upstream of the shock wave; this is more clear

in the limit as v - 0. The out-of-phase part retains the same sign as
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in the upstream solution, since it occurs as a consequence of the xt

term which has a damping effect on the fluid motion.

The motion of the shock wave now can be determined from Eq.

(105). The functions (hz) u and (h Zx) d are obtained by evaluating the

solutions (114a) and (124), respectively, at the first approximation

x = xs 0 to the shock-wave position. The constant value xs 0 is found by

setting the time average of dx s/dt equal to zero, so that c (S) has the
sl Zd

same value as in the steady-flow case. The results are

c- (-u3 x ) (125a)

it

k dt 4UlO(Ie i/Z,,-2isinX+ exp[i(X-vln) X0d t 4 1 u 1 0 I1 ( l + V ) 1 2x s o ( 2 b

The first term contains the effects of the upstream and downstream

changes in flow velocity which result directly from the wall motion, and
0 eit

is 1800 out of phase with the velocity ip 0 (x -x c )e of the wall motion.

At a value of t when the channel width is decreasing upstream and in-

creasing downstream, the flow velocity is increasing ahead of the

shock wave and decreasing behind the shock wave, and the first term

in dx sl/dt implies that the shock wave is moving in the upstream

direction. This term increases as the reduced frequency v increases,

since the lag in the shock-wave position increases as v increases. The

second term in dx sl/dt represents the effect of flow disturbances which

arise because the back pressure is prescribed and which travel upstream
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at a speed u - a from the channel exit. The phase lag v ln (xl/Xs0 is

equal to the time At required for a disturbance to travel upstream

from the exit x = x 1 to the shock wavex = x + ... at a speed

1
u - a = -/E (Y+l) 1ul. x1 + .--

The simple nature of the solutions for this special case permits a

demonstration of the relationships between the solutions to problem (1)

and those to problem (2), for which T = O(E " ) and T = O(E I), respectively.

The general principle is that the solutions to problem (1) evaluated as
2

E r- 0 should agree with the solutions to problem (2) evaluated as ET- Co.

The present solutions can be investigated as ET - o by taking the limit as

k - 0. In this limit, the upstream solution (114a) for h2x in fact has exactly
it

the form (40a) with c 2 (t)+G(x,t)= P0 xe , which is zero at the throat x = 0

so that the condition (45) is satisfied. Similarly, as k -* 0 the downstream

(s) itsolution (124) for h x has the form (40a) with c 2 (t)+G(x,t)= cd +P (x-xI)e

which is constant at the exit x = x 1 so that the condition (44) is satisfied.

Thus the solutions for the flow velocities in problem (1) are limiting cases

of the solutions for problem (2). This is not true, however, for the

shock-wave velocity. As k - 0, Eq. (125b) shows that the shock-wave

velocity u = dx /dT becomes

2 it

S 4 1 u 0  (126)
U 4 u 1 s0

The shock-wave velocity in problem (1), as expressed by Eqs. (79), can

2
be expanded as E T 0 by noting that ulu approaches a constant value
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because the amplitude of the shock-wave oscillation becomes small.

The value of c is again given by Eq. (1Z5a), and substation for G

shown that Eq. (79a) again gives the value (126) for u s , as it must.

Problem (3): a = 0(E ), T = O(E I )

In this problem, the amplitude of the oscillations of the wall is

of the same order as the thickness of the wall (blade) itself. and is

therefore an order of magnitude larger than in problems (1) and (2).

The frequency is the same as in problem (Z), i.e. , T = 0(E ). Thus,

for this case, we set

= E (IZ7a)

T = (kE) " I  (127b)

The equations for the wall shapes are again those given in Eqs. (4).

Governing Equations, Channel- Flow Region

Just as in problems (1) and (2), application of the boundary con-

ditions to the second-order terms leads to the derivation of the govern-

ing equation for the first-order term in the velocity potential 4)I .

Because the boundary conditions do not involve first-order terms,

2.
(01 is again independent of y; however, because terms of order E in

Yw are time-dependent, the first-order terms are no longer steady,

but depend upon time. As a result, u s = O(E), and so from Eqs. (76)

and (27b) u s = kE dx 0/dt + .... That is, x 0  X0 (t) and the
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magnitude of the oscillations of the shock-wave position is 0(1); large

excursions of the shock wave can occur. In addition, the oscillations

in back pressure can occur in the term of order E, rather than the
2

term of order E as was the case in problems (1) and (2).
In order to derive the governing equations for the .i in Eq. (8),

which again is used to represent the perturbation potential, it is

necessary to find a ; that is, it is necessary to evaluate F(T) in Eq.

(10). For this case it is again convenient to use the energy equation

written in terms of the stagnation enthalpy, Eq. (15), and to expand

H as in Eq. (17a) with the governing equation for H, given by Eq. (17b).

Comparing Eqs. (16) and 127b), we see that n = 1 in Eqs. (16) and

(17a) for this case. In addition, Eqs. (13), (19), (20), and (21) hold

2
here for P, P2, P1, HiI F(T), and a , respectively. In Eqs. (20)

2. 2

and (Zla), and thus in a since H - H 0 = E H I , the function gl occurs

and must be evaluated both upstream and downstream of the shock

wave. Although g, = gl(yt) as a function of integration of Eq. (17b),

it is seen from Eq. (21a) that it is at most a function of t. The evalua-

tion of g1 is more easily accomplished by considering the integration

of Eq. (17b) at a given instant, i. e., by evaluating a definite integral.

Thus, upstream of the shock wave,

H1 (x,t) - H1 (-oo,t) = - k (0it(Xt) - Olt (-c,t))

But H1 (-oo,t) = 0 by definition, and we arbitrarily choose the unknown

function of time in the potential to be zero, so it (-o0,t) = 0. Hence,
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upstream of the shock.

H1 = - k it (128a)

g= 0 (128b)

In order to perform the same kind of calculation downstream of

the shock wave, it is necessary to calculate the jump in H across the

wave. From Eqs. (24) and (30), it is seen that to the order desired,

Hd = H +u (u -u) .. (129)d u s (d -U

where, again, the subscripts u and d refer to positions immediately

upstream and downstream of the shock wave, respectively. If Eqs.

(5a) and (17a) are used for the expansions of u and H, then Eq. (129)

may be used to show that

H H= Hl+ - U) (130a)

H u = - k (blt) u  (130b)

where, since the flow is unsteady in first order, u must be O(E), as

mentioned previously. If now Eq. (17b) is integrated as a definite

integral, at a given instant, from the shock wave to a point somewhere

downstream, it is found that downstream of the shock wave

H 1 =Hld - k (0It - (Old (131a)

l = HId + k (0Itd (131b)

where (0lt will be calculated later.
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If E q. (2 1b), wit h H -- H 00 E zHis and Eq. (8) are substituted

into Eq. (9), with T = t and T as in Eq. (127b), one obtains the

following governing equations for 4 i, 2 an~d 3

4) O (13 Za)

4? = 2k4) + (Y+1 + 2 1y y(13 Zb)

+ (Y+ ) (Oi 02 + (Y -1) 41Ix 4) 7yy + (-Y+ 1 ) 2 Olx (1 3 2c)
x2 I'x1'x

The corresponding boundary conditions are found from Eq. (4), with

2
a E ,and Eqs. (5) and (31); thus

) x .t f (13 3a)

4z(x, -1,t 0 f; - Gx (13 3b)

(x, 1, t0=- t (f' - G) + kGt (13 3c)

4) ,- 1, t) 01 (f- G)- k Gt (133d)

where 4'. u.i and 4'. = v .

Since 0 l = 0 at either boundary, then, from Eq. (132a),

40y ly (x,t) = 0 and so

= 1' (xIt) (134)

With this result for 4'1, Eq. (132b) may be integrated to give

2

0 ((Y+l1) 4'lx4lx + 2 k4'ix) Y-- + g? y + h? (x, t) (135)
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After applying the boundary conditions on Zy given by Eqs. ('33a) and

(133c), one obtains two equations which may be combined to give

(x,t) f; - f' - Gx + Gux] (136a)

Z k l+ ('+ 1) V- + Gx (136b)

where f and G are defined in Eqs. (37b) and (40b), respectively. Eq.

(136b) is seen to be the governing equation for 0 1 ; as mentioned

earlier, this case is different from those considered in problems (1)

and (2) because here 01 depends upon time. It may be noted that

whereas the effects of the oscillating walls are felt in the governing

differential equation itself through the function G, the oscillating back

pressure is introduced either through initial or boundary conditions.

In order to complete the solutions to second order, it is neces-

sary to find the governing equation for h 2 (x,t). As in the previous

cases considered, this equation is found by integrating Eq. (132c) once,

applying boundary conditions given by Eqs. (133b) and (133d), and sub-

tracting one of the resulting equations from the other. The resulting

equation is, after some rearranging,

k2 k
Zkh2 + (Y+ 1) (lxhZxx h k tt - 3 Gxxt + (Y - 1) IH1

+ (Y+1) ( x (f-G)xx) +  (Y - 1) Olx (f-G)x
+ 6 x(-))+(

2ko 0 (Y+l1 ) 2 0 e (f-G) +kG (37
"2 x 9 lxt " 4 , x 4 lxx lx x t (17)
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Equation (137) may be simplified somewhat by making substitutions

for Oltt and 0Ixt" Thus, if Eq. (136b) is integrated over x, again in

terms of a definite integral with 0it (-oo,t) = 0 as mentioned above,

and the resulting equation is differentiated with respect to t, one finds

that

1 (Y+ 1)kltt = t 2 Ix OIxt (138)

where 4Ix (-o,t) = u1 = constant here and where F = G = 0 upstream

of the channel, where x < x 0 . If Eq. (138) is substituted into Eq. (137),

and if Eq. (136b) is used for 0 lxt in the resulting equation, the gov-

erning equation for hZx is found to be, finally,

Zkh + (Y + 1) (0 hx) =  G k G

+ H + ),Y+I H +( l-1)@xx 1 + -6- ) [Ix (f " GX~

1 2 (3 y- 5) (
4 Ix lxx 4 'lx (f-)x (139)

The last equation needed for solution of this problem to the order

desired is that for the velocity and position of the shock wave. As in

the problems considered previously, this relation is found from the

jump conditions which hold across the moving shock wave. The rele-

vant equations are (30d) and (3 0e), where u and H on the right-hand

side of Eq. (3 0e) may be evaluated either both upstream or both down-

stream of the shock wave, as a result of Eq. (24); here conditions up-

stream of the wave are used. With Eqs. (5a) for u, (7b) for u, and
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(17a) with n 1 for H, the following equations are found for dx 0/dt and

dx sl/dt:

4k dxso
(Y + 1) dt - ld + Ulu (4a

4k dx 4
(Y+1) dt - Zd Zu

dx s  dx Z
Z(Y-- )(Hl k d"- + "- (s) ) (140b)

Thus, it is seen that to first order the jump conditions across the

shock wave may be satisfied as long as Eq. (140a) is satisfied. The

only point at issue is the initial condition in that xs0 must be specified

at a given time; it is not possible, for example, to use Eq. (140a) to

obtain the steady-state value of x 0 , when dx s/dt = 0. On the other

hand, it is clear that Eq. (140b) cannot be satisfied in that x s = Xsl (t)

whereas uZd and u2u both depend upon y as well as upon time. Thus,

the jump conditions cannot be satisfied to second order by the channel-

flow solutions. As in previous cases, it will be necessary to consider

an inner region about the shock wave which is now moving at u = O(E).

In this region, solutions will have to satisfy the local jump conditions

across the shock wave and match with the outer channel-flow solutions.

The inner region has not been analyzed as yet for this case. Hence the

problem formulation described here allows solution only to first order,

using Eqs. (136b) and (140a).
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Simplified Formulation for a Special Case

Simplifications leading to an ordinary differential equation for

the shock-wave motion can be achieved in a special case analogous to

that considered for Problem 2. Although for the present problem a

complete analytical solution can not be obtained, the example appears

to provide a useful test case for numerical calculations, to show the

general effects of changes in the parameters with numerical integra-

tion needed only for the shock-wave motion and not for the entire flow

field.

In this special case the flow accelerates through sonic speed, at

a location which in general no longer coincides with the location of the

instantaneous minimum cross-section area, and a shock wave is pres-

ent further downstream. The walls have the symmetric parabolic

shape given by Eq. (93) and are given a simple harmonic pitching os-

cillationas shown by Eq. (lZ), where t = EkT as before, so that the

(scaled) frequency is again k. The difference is that the amplitude of

the wall oscillations is O(E ) rather than O(E 3); it follows that the sonic

line and the shock wave undergo displacements which are 0(l) rather

than 0(E).

With the choices (93) and (112) for the functions f(x) and G(x,t),

the differential equation (136b) can be rewritten, with Ix = UI for

simpler notation, as

Zkuit + (Y+1)u U1 lx (Y+ 1)(u 10/x 1 )2 X + PO eit (141)
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For an arbitrary right-hand side, this equation can be integrated

1
numerically along characteristics dx/dt = - (Y+ 1) u /k. In the pres-

ent case, in order to obtain an analytical result, a coordinate trans-

formation from x,t to r,s is carried out, such that s is measured along

characteristics and so r is constant along characteristics; i. e. , the

value of r identifies a characteristic. If we take at/as = 1, the differ-

ential equation (141) is replaced by the system

at5s 1 (142a)

ax Y+ I
s- Zk uI (142b)

IY 2 P it
t ( ) x + (1 4 3 c)

Ts- 2k x I  2ke

It is convenient to take s = 0 at t = 0, so that Eq. (142a) gives simply

t = s. The general solutions for x and u1 can be written as

(s-r)/v -(s-r)/v 0 Xl is
x =A(r) e + B(r) e - 2 2 e (144a)(Y+ O100~o (1 +V )

U {A(r)e (s-r)Iv -B(r)e (s-r)/v }

i P0 X I is
- e (144b)

(y+l1)ju 1 001(1 +V )

where A(r) and B(r) are to be determined from initial conditions for

x(r,s) and uI(rs), and v is defined by Eq. ( 14b). For the flow
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downstream of the shock wave, dx/dt < 0 along characteristics, so that

disturbances propagate upstream from the exit cross-section x =x1

toward the shock wave, and initial conditions should then be specified

at x = x V We can choose r = s at x = x, .so that the initial conditions

aeUI(r, r) = uO P x (r, r) =x1(145a,b)

where u 0 is determined I-y the downstream pressure; we assume that

the O(E) term in the pressure at x = xIcan be specified arbitrarily.

The solutions for x (r, s) and u1 (r, s) downstream of the shock wave

are then

.M- I u0  xi PO(I +iv) i srl
X 1 2 ulol Y+ 1) U? (I +V I

1p uj X 2 2O eir e v(sr)/v
+ IlaOI (Y+ 1) u (1 +V )e e

2 2 P e is (146a)
(Y+ 1  (14+V2

U1 1' l+uO xi PO(I + iv) i sr/

U'l 10 2+ulo (Y+1)u2 (1) eir 1

1 x1 ' PO (1 - iv) eire sr/

1 Ul 1 o (Y+l)u z (Il+V2

iv 2 2 P e is (146b)
(Y+ 1)u (l0+ V
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For the flow ahead of the shock wave, the characteristics
1

dx/ dt (y + 1) u1 have positive slope at points in the x,t plane where

u 1 > 0 and negative slope at points where u1 < 0, so that small dis-

turbances are always propagated in a direction away from the sonic

line where u I = 0. The first approximation to the location of the sonic

line will be denoted by x = x*(t), where x* is the value of x for which

u = 0. We will assume tentatively, subject to a later check for self-

consistency, that u1 = O(x-x*) as x - x,, just as for steady flow; that

is, au/8x is neither zero nor infinite at x = x-. It then follows that

dx/dt = O(x - x*) along characteristics as x -- x, and therefore also

s - -o as x- x* along a characteristic. Thus necessarily B(r) = 0,

and the solution for u 1 found from Eqs. (144a,b) is in fact simply pro-

portional to x - x*(t):

1  - (147a)

2 U lol (I - iv) it

x.(t) - - e e (147b)
('Y+l)u (I + v

10

The result of course is consistent with the assumption made above.

The instantaneous cross-section area of the channel has a minimum at

the location x = xmi n where the right-hand side of Eq. (141) is zero.

By comparison with Eq. (147b) it is seen that x* = X min/(1 + iv), and

so the sonic line no longer occurs at the cross-section having minimum

area. Since 0 <arg (1 + iv) < r/2 for 0 <v < 0o, the displacement of
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the sonic line lags the wall motion by a phase angle between zero and

iT/Z; the amplitude in Eq. (147b) decreases as the frequency increases,

withx,-" 0 as V -c.

A further check concerning the flow near the sonic line x = x

can be made by observing that the term Z k cxt in the differential equa-

tion becomes of the same order as cj when x - O( ). A local

solution can be obtained in the form

E € 2  (x * , y, t) + .- (148a)

Sx - x,
x 1- (149b)

One finds then

+ x* = 0 (149a)
kY dt Zx~x

2

(x* +1 t) + 1 ((y+l) 1 - x + e it (149b)
xl

The solution which matches correctly as x -o £ o0 with the channel

solution evaluated as x - x*(t) is

2

(x*, y, t) = (Y+ 1) 0 X +U0 eit

x
1

i lu 1  *2+ - x + h (x*,t) (150)
xl1

where the function h 2 (x,t) is not yet known, but would be found by solu-

tion of Eq. (137). The result (150) simply says that the largest terms
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in the channel solution remain correct near the sonic line x = x,(t) +

and that no special solution is needed there.

The shock-wave velocity dx s/dt is given by Eq. (140a) in terms

of the flow velocities Ulu and uld immediately upstream and downstream.

Since x is continuous at the shock wave, one more condition is available.

To use this condition we can also define r to be continuous across the

shock wave, so that a characteristic arriving at a given instant from the

upstream side has the same value of r as the characteristic which

reaches the shock wave from the downstream side at the same instant.

From the continuity of x (r, s), the function A(r) in the upstream solu-

tions for x and u1 is then determined, and it is easily found that

Ulu " Uld u0 PO X1 (1 - iv) )s)/v
1 u 2 )

o ('y+l) u (l+v

The shock-wave velovity dx /dt can be expressed in terms of theso
shock-wave position R(s) if the solution for x(r, s) is evaluated at

r = R(s) and then differentiated:

dxs0  ax ax dR (152)

dt 8s lr=R a I r=R d

With the substitution (142b) for x(rs), it is found from the first approxi-

mation (140a) to the shock-polar equation that

u u 4k ax dR (153)
lu ld Y + 1 ar r=R ds
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Substitution in Eq. (153) gives, finally, an ordinary differential equa-

tion for R(s)

S u0 + POxI (-iv) eiR (d

lUloo I+(,Y+1)Ul (1+V2 1 (
iR

+ u-10 Z(s-R)/v + 0 x IeR - iv(l-iv) e2s-R)/v
e (Y+ l)u2 1 + v

(154)

where it is understood that the real part is to be taken. For the sim-

plest example the exit velocity is the same as the entrance velocity, so

that u0 = u < 0; the remaining parameters are v and %0x /[(Y+l)u 2

If an initial condition is specified, numerical integration of Eq. (154)

would give the shock-wave location in the form r = R(s); substitution in

the solution (146a) for x (r, s) then would allow calculation of x (t).
so

Presumably some sort of criterion for the existence of periodic solu-

tions could thereby also be established. As a preliminary step, quali-

tative imformation about the solutions should be sought by consideration

of limiting cases and by study of the singular points of the differential

equation.
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MII. SUMMARY

The extension of previous work on unsteady transonic flow in two-

dimensional channels to include effects of oscillating walls has proven

to be relatively straightforward, for the cases considered, insofar as

formulation of the problem is concerned. Thus, it has been possible to

consider problems where the unsteadiness may be caused by any mix-

ture of oscillations in wall position and back pressure. The essential

difference between the two lies in the fact that when the walls are

stationary, oscillations in back pressure cannot cause unsteadiness

upstream of the shock wave, whereas when oscillations in wall position

occur, the entire flow is time-dependent. Although it may be possible

to find equivalent impressed oscillations for the walls and back pres-

sure, such that the same shock-wave velocity and position result (e. g.,

problem 1), the distributions in flow properties are then not the same.

Hence, as a general result, it is not possible to find equivalent im-

pressed oscillations which give the same instantaneous flow fields.

The problems considered involve both small and large-amplitude

shock-wave oscillations; in the latter case motion of the shock wave

throughout the whole duct is allowed. In general, derivation of the

governing equations for the flow properties has been carried out to the

point that solutions valid to second order may be obtained. Where

possible, analytical solutions have been presented. Where this was
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impossible, analytical solutions for special cases have been given and

the problems formulated for numerical calculation.

Analysis of the thin region about the leading edge has extended

previous analyses in that inlet problems, as well as straightforward

channel flow, may now be considered. Although exterior cowl effects

were not taken into account, because specific shapes would be needed,

their addition would be straightforward.

One of the more interesting results found as a result of the

detailed analysis of the throat region is the possibility of large excur-

sions of the sonic line, and the fact that the sonic line need not, then,

occur at the instantaneous position of minimum cross-sectional area.

The application to a duct with boundary layer which separates

downstream of a shock wave such that the size of the bubble (and thus

the effective channel wall shape) oscillates with time was considered

in detail only for problem 1. However, this illustrated the method of

solution well enough that further demonstrations were considered un-

necessary.

Detailed numerical computations were given only for problem 1.

Only example solutions with simple wall shapes and harmonic oscilla-

tions were shown for problem Z, because more complicated shapes and

conditions would have necessitated extensive numerical work which

would have added little understanding. Such is not the case for prob-

lem 3, where the simple solution presented allowed only calculation of

the velocity field and not the velocity and location of the shock wave;
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Moreover, this problem is important enough, involving unsteadiness

in lowest order perturbation as it does, that it is recommended that

detailed and fairly extensive numerical calculations should be carried

out in future work.
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Figure 1. Coordinate system and notation used.
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F'igure 2. Coordinate system and notation for moving
shock wave.
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Figure 3a. Leading-edge region (z* plane).
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Figure 3b. Transformed leading-edge region (plane)
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Figure 7. xso ve t fr om nirqerical integration of Eq. (98) for (a) x 0
= 0. 75 and (b) x'' = 1. 5; in each case, c = 0. 1, T =150.,

G d = (Y + 1) (4. 5) Oin (2t). f (x) as9 in Eq. (9 9), and y =1. 4.

Solutions for x 0> 0 from Figure 15 of Ref. 15.
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